MapComplete/Logic/GeoOperations.ts
2021-09-26 17:36:39 +02:00

494 lines
No EOL
16 KiB
TypeScript

import * as turf from '@turf/turf'
import {Utils} from "../Utils";
import {Tiles} from "../Models/TileRange";
export class GeoOperations {
static surfaceAreaInSqMeters(feature: any) {
return turf.area(feature);
}
/**
* Converts a GeoJson feature to a point GeoJson feature
* @param feature
*/
static centerpoint(feature: any) {
const newFeature = turf.center(feature);
newFeature.properties = feature.properties;
newFeature.id = feature.id;
return newFeature;
}
static centerpointCoordinates(feature: any): [number, number] {
// @ts-ignore
return turf.center(feature).geometry.coordinates;
}
/**
* Returns the distance between the two points in kilometers
* @param lonlat0
* @param lonlat1
*/
static distanceBetween(lonlat0: [number, number], lonlat1: [number, number]) {
return turf.distance(lonlat0, lonlat1)
}
/**
* Calculates the overlap of 'feature' with every other specified feature.
* The features with which 'feature' overlaps, are returned together with their overlap area in m²
*
* If 'feature' is a LineString, the features in which this feature is (partly) embedded is returned, the overlap length in meter is given
*
* If 'feature' is a point, it will return every feature the point is embedded in. Overlap will be undefined
*/
static calculateOverlap(feature: any, otherFeatures: any[]): { feat: any, overlap: number }[] {
const featureBBox = BBox.get(feature);
const result: { feat: any, overlap: number }[] = [];
if (feature.geometry.type === "Point") {
const coor = feature.geometry.coordinates;
for (const otherFeature of otherFeatures) {
if (feature.id !== undefined && feature.id === otherFeature.id) {
continue;
}
if (otherFeature.geometry === undefined) {
console.error("No geometry for feature ", feature)
throw "List of other features contains a feature without geometry an undefined"
}
if (GeoOperations.inside(coor, otherFeature)) {
result.push({feat: otherFeature, overlap: undefined})
}
}
return result;
}
if (feature.geometry.type === "LineString") {
for (const otherFeature of otherFeatures) {
if (feature.id !== undefined && feature.id === otherFeature.id) {
continue;
}
const intersection = this.calculateInstersection(feature, otherFeature, featureBBox)
if (intersection === null) {
continue
}
result.push({feat: otherFeature, overlap: intersection})
}
return result;
}
if (feature.geometry.type === "Polygon" || feature.geometry.type === "MultiPolygon") {
for (const otherFeature of otherFeatures) {
if (feature.id === otherFeature.id) {
continue;
}
if (otherFeature.geometry.type === "Point") {
if (this.inside(otherFeature, feature)) {
result.push({feat: otherFeature, overlap: undefined})
}
continue;
}
// Calculate the surface area of the intersection
const intersection = this.calculateInstersection(feature, otherFeature, featureBBox)
if (intersection === null) {
continue;
}
result.push({feat: otherFeature, overlap: intersection})
}
return result;
}
console.error("Could not correctly calculate the overlap of ", feature, ": unsupported type")
return result;
}
public static inside(pointCoordinate, feature): boolean {
// ray-casting algorithm based on
// http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
if (feature.geometry.type === "Point") {
return false;
}
if (pointCoordinate.geometry !== undefined) {
pointCoordinate = pointCoordinate.geometry.coordinates
}
if (feature.geometry.type === "MultiPolygon") {
const coordinates = feature.geometry.coordinates[0];
const outerPolygon = coordinates[0];
const inside = GeoOperations.inside(pointCoordinate, {
geometry: {
type: 'Polygon',
coordinates: [outerPolygon]
}
})
if (!inside) {
return false;
}
for (let i = 1; i < coordinates.length; i++) {
const inHole = GeoOperations.inside(pointCoordinate, {
geometry: {
type: 'Polygon',
coordinates: [coordinates[i]]
}
})
if (inHole) {
return false;
}
}
return true;
}
const x: number = pointCoordinate[0];
const y: number = pointCoordinate[1];
for (let i = 0; i < feature.geometry.coordinates.length; i++) {
let poly = feature.geometry.coordinates[i];
let inside = false;
for (let i = 0, j = poly.length - 1; i < poly.length; j = i++) {
const coori = poly[i];
const coorj = poly[j];
const xi = coori[0];
const yi = coori[1];
const xj = coorj[0];
const yj = coorj[1];
const intersect = ((yi > y) != (yj > y))
&& (x < (xj - xi) * (y - yi) / (yj - yi) + xi);
if (intersect) {
inside = !inside;
}
}
if (inside) {
return true;
}
}
return false;
};
static lengthInMeters(feature: any) {
return turf.length(feature) * 1000
}
static buffer(feature: any, bufferSizeInMeter: number) {
return turf.buffer(feature, bufferSizeInMeter / 1000, {
units: 'kilometers'
})
}
static bbox(feature: any) {
const [lon, lat, lon0, lat0] = turf.bbox(feature)
return {
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
lon,
lat
],
[
lon0,
lat
],
[
lon0,
lat0
],
[
lon,
lat0
],
[
lon,
lat
],
]
}
}
}
/**
* Generates the closest point on a way from a given point
*
* The properties object will contain three values:
// - `index`: closest point was found on nth line part,
// - `dist`: distance between pt and the closest point (in kilometer),
// `location`: distance along the line between start and the closest point.
* @param way The road on which you want to find a point
* @param point Point defined as [lon, lat]
*/
public static nearestPoint(way, point: [number, number]) {
return turf.nearestPointOnLine(way, point, {units: "kilometers"});
}
public static toCSV(features: any[]): string {
const headerValuesSeen = new Set<string>();
const headerValuesOrdered: string[] = []
function addH(key) {
if (!headerValuesSeen.has(key)) {
headerValuesSeen.add(key)
headerValuesOrdered.push(key)
}
}
addH("_lat")
addH("_lon")
const lines: string[] = []
for (const feature of features) {
const properties = feature.properties;
for (const key in properties) {
if (!properties.hasOwnProperty(key)) {
continue;
}
addH(key)
}
}
headerValuesOrdered.sort()
for (const feature of features) {
const properties = feature.properties;
let line = ""
for (const key of headerValuesOrdered) {
const value = properties[key]
if (value === undefined) {
line += ","
} else {
line += JSON.stringify(value) + ","
}
}
lines.push(line)
}
return headerValuesOrdered.map(v => JSON.stringify(v)).join(",") + "\n" + lines.join("\n")
}
/**
* Calculates the intersection between two features.
* Returns the length if intersecting a linestring and a (multi)polygon (in meters), returns a surface area (in m²) if intersecting two (multi)polygons
* Returns 0 if both are linestrings
* Returns null if the features are not intersecting
*/
private static calculateInstersection(feature, otherFeature, featureBBox: BBox, otherFeatureBBox?: BBox): number {
try {
if (feature.geometry.type === "LineString") {
otherFeatureBBox = otherFeatureBBox ?? BBox.get(otherFeature);
const overlaps = featureBBox.overlapsWith(otherFeatureBBox)
if (!overlaps) {
return null;
}
// Calculate the length of the intersection
let intersectionPoints = turf.lineIntersect(feature, otherFeature);
if (intersectionPoints.features.length == 0) {
// No intersections.
// If one point is inside of the polygon, all points are
const coors = feature.geometry.coordinates;
const startCoor = coors[0]
if (this.inside(startCoor, otherFeature)) {
return this.lengthInMeters(feature)
}
return null;
}
let intersectionPointsArray = intersectionPoints.features.map(d => {
return d.geometry.coordinates
});
if (otherFeature.geometry.type === "LineString") {
if (intersectionPointsArray.length > 0) {
return 0
}
return null;
}
if (intersectionPointsArray.length == 1) {
// We need to add the start- or endpoint of the current feature, depending on which one is embedded
const coors = feature.geometry.coordinates;
const startCoor = coors[0]
if (this.inside(startCoor, otherFeature)) {
// The startpoint is embedded
intersectionPointsArray.push(startCoor)
} else {
intersectionPointsArray.push(coors[coors.length - 1])
}
}
let intersection = turf.lineSlice(turf.point(intersectionPointsArray[0]), turf.point(intersectionPointsArray[1]), feature);
if (intersection == null) {
return null;
}
const intersectionSize = turf.length(intersection); // in km
return intersectionSize * 1000
}
if (feature.geometry.type === "Polygon" || feature.geometry.type === "MultiPolygon") {
const otherFeatureBBox = BBox.get(otherFeature);
const overlaps = featureBBox.overlapsWith(otherFeatureBBox)
if (!overlaps) {
return null;
}
if (otherFeature.geometry.type === "LineString") {
return this.calculateInstersection(otherFeature, feature, otherFeatureBBox, featureBBox)
}
const intersection = turf.intersect(feature, otherFeature);
if (intersection == null) {
return null;
}
return turf.area(intersection); // in m²
}
} catch (exception) {
console.warn("EXCEPTION CAUGHT WHILE INTERSECTING: ", exception);
return undefined
}
return undefined;
}
}
export class BBox {
readonly maxLat: number;
readonly maxLon: number;
readonly minLat: number;
readonly minLon: number;
static global: BBox = new BBox([[-180, -90], [180, 90]]);
constructor(coordinates) {
this.maxLat = Number.MIN_VALUE;
this.maxLon = Number.MIN_VALUE;
this.minLat = Number.MAX_VALUE;
this.minLon = Number.MAX_VALUE;
for (const coordinate of coordinates) {
this.maxLon = Math.max(this.maxLon, coordinate[0]);
this.maxLat = Math.max(this.maxLat, coordinate[1]);
this.minLon = Math.min(this.minLon, coordinate[0]);
this.minLat = Math.min(this.minLat, coordinate[1]);
}
this.check();
}
static fromLeafletBounds(bounds) {
return new BBox([[bounds.getWest(), bounds.getNorth()], [bounds.getEast(), bounds.getSouth()]])
}
static get(feature): BBox {
if (feature.bbox?.overlapsWith === undefined) {
const turfBbox: number[] = turf.bbox(feature)
feature.bbox = new BBox([[turfBbox[0], turfBbox[1]], [turfBbox[2], turfBbox[3]]]);
}
return feature.bbox;
}
public overlapsWith(other: BBox) {
if (this.maxLon < other.minLon) {
return false;
}
if (this.maxLat < other.minLat) {
return false;
}
if (this.minLon > other.maxLon) {
return false;
}
return this.minLat <= other.maxLat;
}
public isContainedIn(other: BBox) {
if (this.maxLon > other.maxLon) {
return false;
}
if (this.maxLat > other.maxLat) {
return false;
}
if (this.minLon < other.minLon) {
return false;
}
if (this.minLat < other.minLat) {
return false
}
return true;
}
private check() {
if (isNaN(this.maxLon) || isNaN(this.maxLat) || isNaN(this.minLon) || isNaN(this.minLat)) {
console.log(this);
throw "BBOX has NAN";
}
}
static fromTile(z: number, x: number, y: number): BBox {
return new BBox(Tiles.tile_bounds_lon_lat(z, x, y))
}
static fromTileIndex(i: number): BBox {
return BBox.fromTile(...Tiles.tile_from_index(i))
}
getEast() {
return this.maxLon
}
getNorth() {
return this.maxLat
}
getWest() {
return this.minLon
}
getSouth() {
return this.minLat
}
pad(factor: number) : BBox {
const latDiff = this.maxLat - this.minLat
const lat = (this.maxLat + this.minLat) / 2
const lonDiff = this.maxLon - this.minLon
const lon = (this.maxLon + this.minLon) / 2
return new BBox([[
lon - lonDiff * factor,
lat - latDiff * factor
], [lon + lonDiff * factor,
lat + latDiff * factor]])
}
toLeaflet() {
return [[this.minLat, this.minLon], [this.maxLat, this.maxLon]]
}
}