forked from MapComplete/MapComplete
776 lines
29 KiB
TypeScript
776 lines
29 KiB
TypeScript
import * as turf from '@turf/turf'
|
|
import {AllGeoJSON, booleanWithin, Coord, Feature, Geometry, MultiPolygon, Polygon} from '@turf/turf'
|
|
import {BBox} from "./BBox";
|
|
import togpx from "togpx"
|
|
import Constants from "../Models/Constants";
|
|
import LayerConfig from "../Models/ThemeConfig/LayerConfig";
|
|
|
|
export class GeoOperations {
|
|
|
|
private static readonly _earthRadius = 6378137;
|
|
private static readonly _originShift = 2 * Math.PI * GeoOperations._earthRadius / 2;
|
|
|
|
static surfaceAreaInSqMeters(feature: any) {
|
|
return turf.area(feature);
|
|
}
|
|
|
|
/**
|
|
* Converts a GeoJson feature to a point GeoJson feature
|
|
* @param feature
|
|
*/
|
|
static centerpoint(feature: any) {
|
|
const newFeature = turf.center(feature);
|
|
newFeature.properties = feature.properties;
|
|
newFeature.id = feature.id;
|
|
return newFeature;
|
|
}
|
|
|
|
/**
|
|
* Returns [lon,lat] coordinates
|
|
* @param feature
|
|
*/
|
|
static centerpointCoordinates(feature: AllGeoJSON): [number, number] {
|
|
return <[number, number]>turf.center(feature).geometry.coordinates;
|
|
}
|
|
|
|
/**
|
|
* Returns the distance between the two points in meters
|
|
* @param lonlat0
|
|
* @param lonlat1
|
|
*/
|
|
static distanceBetween(lonlat0: [number, number], lonlat1: [number, number]) {
|
|
return turf.distance(lonlat0, lonlat1, {units: "meters"})
|
|
}
|
|
|
|
static convexHull(featureCollection, options: { concavity?: number }) {
|
|
return turf.convex(featureCollection, options)
|
|
}
|
|
|
|
/**
|
|
* Calculates the overlap of 'feature' with every other specified feature.
|
|
* The features with which 'feature' overlaps, are returned together with their overlap area in m²
|
|
*
|
|
* If 'feature' is a LineString, the features in which this feature is (partly) embedded is returned, the overlap length in meter is given
|
|
* If 'feature' is a Polygon, overlapping points and points within the polygon will be returned
|
|
*
|
|
* If 'feature' is a point, it will return every feature the point is embedded in. Overlap will be undefined
|
|
*
|
|
* const polygon = {"type": "Feature","properties": {},"geometry": {"type": "Polygon","coordinates": [[[1.8017578124999998,50.401515322782366],[-3.1640625,46.255846818480315],[5.185546875,44.74673324024678],[1.8017578124999998,50.401515322782366]]]}};
|
|
* const point = {"type": "Feature", "properties": {}, "geometry": { "type": "Point", "coordinates": [2.274169921875, 46.76244305208004]}};
|
|
* const overlap = GeoOperations.calculateOverlap(point, [polygon]);
|
|
* overlap.length // => 1
|
|
* overlap[0].feat == polygon // => true
|
|
* const line = {"type": "Feature","properties": {},"geometry": {"type": "LineString","coordinates": [[3.779296875,48.777912755501845],[1.23046875,47.60616304386874]]}};
|
|
* const lineOverlap = GeoOperations.calculateOverlap(line, [polygon]);
|
|
* lineOverlap.length // => 1
|
|
* lineOverlap[0].overlap // => 156745.3293320278
|
|
* lineOverlap[0].feat == polygon // => true
|
|
* const line0 = {"type": "Feature","properties": {},"geometry": {"type": "LineString","coordinates": [[0.0439453125,47.31648293428332],[0.6591796875,46.77749276376827]]}};
|
|
* const overlap0 = GeoOperations.calculateOverlap(line0, [polygon]);
|
|
* overlap.length // => 1
|
|
*/
|
|
static calculateOverlap(feature: any, otherFeatures: any[]): { feat: any, overlap: number }[] {
|
|
|
|
const featureBBox = BBox.get(feature);
|
|
const result: { feat: any, overlap: number }[] = [];
|
|
if (feature.geometry.type === "Point") {
|
|
const coor = feature.geometry.coordinates;
|
|
for (const otherFeature of otherFeatures) {
|
|
|
|
if (feature.properties.id !== undefined && feature.properties.id === otherFeature.properties.id) {
|
|
continue;
|
|
}
|
|
|
|
if (otherFeature.geometry === undefined) {
|
|
console.error("No geometry for feature ", feature)
|
|
throw "List of other features contains a feature without geometry an undefined"
|
|
}
|
|
|
|
if (GeoOperations.inside(coor, otherFeature)) {
|
|
result.push({feat: otherFeature, overlap: undefined})
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
if (feature.geometry.type === "LineString") {
|
|
|
|
for (const otherFeature of otherFeatures) {
|
|
|
|
if (feature.properties.id !== undefined && feature.properties.id === otherFeature.properties.id) {
|
|
continue;
|
|
}
|
|
|
|
const intersection = GeoOperations.calculateInstersection(feature, otherFeature, featureBBox)
|
|
if (intersection === null) {
|
|
continue
|
|
}
|
|
result.push({feat: otherFeature, overlap: intersection})
|
|
|
|
}
|
|
return result;
|
|
}
|
|
|
|
if (feature.geometry.type === "Polygon" || feature.geometry.type === "MultiPolygon") {
|
|
|
|
for (const otherFeature of otherFeatures) {
|
|
|
|
if (feature.properties.id !== undefined && feature.properties.id === otherFeature.properties.id) {
|
|
continue;
|
|
}
|
|
|
|
if (otherFeature.geometry.type === "Point") {
|
|
if (this.inside(otherFeature, feature)) {
|
|
result.push({feat: otherFeature, overlap: undefined})
|
|
}
|
|
continue;
|
|
}
|
|
|
|
|
|
// Calculate the surface area of the intersection
|
|
|
|
const intersection = this.calculateInstersection(feature, otherFeature, featureBBox)
|
|
if (intersection === null) {
|
|
continue;
|
|
}
|
|
result.push({feat: otherFeature, overlap: intersection})
|
|
|
|
}
|
|
return result;
|
|
}
|
|
console.error("Could not correctly calculate the overlap of ", feature, ": unsupported type")
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Helper function which does the heavy lifting for 'inside'
|
|
*/
|
|
private static pointInPolygonCoordinates(x: number, y: number, coordinates: [number, number][][]) {
|
|
const inside = GeoOperations.pointWithinRing(x, y, /*This is the outer ring of the polygon */coordinates[0])
|
|
if (!inside) {
|
|
return false;
|
|
}
|
|
for (let i = 1; i < coordinates.length; i++) {
|
|
const inHole = GeoOperations.pointWithinRing(x, y, coordinates[i] /* These are inner rings, aka holes*/)
|
|
if (inHole) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Detect wether or not the given point is located in the feature
|
|
*
|
|
* // Should work with a normal polygon
|
|
* const polygon = {"type": "Feature","properties": {},"geometry": {"type": "Polygon","coordinates": [[[1.8017578124999998,50.401515322782366],[-3.1640625,46.255846818480315],[5.185546875,44.74673324024678],[1.8017578124999998,50.401515322782366]]]}};
|
|
* GeoOperations.inside([3.779296875, 48.777912755501845], polygon) // => false
|
|
* GeoOperations.inside([1.23046875, 47.60616304386874], polygon) // => true
|
|
*
|
|
* // should work with a multipolygon and detect holes
|
|
* const multiPolygon = {"type": "Feature", "properties": {},
|
|
* "geometry": {
|
|
* "type": "MultiPolygon",
|
|
* "coordinates": [[
|
|
* [[1.8017578124999998,50.401515322782366],[-3.1640625,46.255846818480315],[5.185546875,44.74673324024678],[1.8017578124999998,50.401515322782366]],
|
|
* [[1.0107421875,48.821332549646634],[1.329345703125,48.25394114463431],[1.988525390625,48.71271258145237],[0.999755859375,48.86471476180277],[1.0107421875,48.821332549646634]]
|
|
* ]]
|
|
* }
|
|
* };
|
|
* GeoOperations.inside([2.515869140625, 47.37603463349758], multiPolygon) // => true
|
|
* GeoOperations.inside([1.42822265625, 48.61838518688487], multiPolygon) // => false
|
|
* GeoOperations.inside([4.02099609375, 47.81315451752768], multiPolygon) // => false
|
|
*/
|
|
public static inside(pointCoordinate, feature): boolean {
|
|
// ray-casting algorithm based on
|
|
// http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
|
|
|
|
if (feature.geometry.type === "Point") {
|
|
return false;
|
|
}
|
|
|
|
if (pointCoordinate.geometry !== undefined) {
|
|
pointCoordinate = pointCoordinate.geometry.coordinates
|
|
}
|
|
|
|
const x: number = pointCoordinate[0];
|
|
const y: number = pointCoordinate[1];
|
|
|
|
|
|
if (feature.geometry.type === "MultiPolygon") {
|
|
const coordinatess = feature.geometry.coordinates;
|
|
for (const coordinates of coordinatess) {
|
|
const inThisPolygon = GeoOperations.pointInPolygonCoordinates(x, y, coordinates)
|
|
if (inThisPolygon) {
|
|
return true;
|
|
}
|
|
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
if (feature.geometry.type === "Polygon") {
|
|
return GeoOperations.pointInPolygonCoordinates(x, y, feature.geometry.coordinates)
|
|
}
|
|
|
|
throw "GeoOperations.inside: unsupported geometry type "+feature.geometry.type
|
|
|
|
|
|
}
|
|
|
|
static lengthInMeters(feature: any) {
|
|
return turf.length(feature) * 1000
|
|
}
|
|
|
|
static buffer(feature: any, bufferSizeInMeter: number) {
|
|
return turf.buffer(feature, bufferSizeInMeter / 1000, {
|
|
units: 'kilometers'
|
|
})
|
|
}
|
|
|
|
static bbox(feature: any) {
|
|
const [lon, lat, lon0, lat0] = turf.bbox(feature)
|
|
return {
|
|
"type": "Feature",
|
|
"geometry": {
|
|
"type": "LineString",
|
|
"coordinates": [
|
|
[
|
|
lon,
|
|
lat
|
|
],
|
|
[
|
|
lon0,
|
|
lat
|
|
],
|
|
[
|
|
lon0,
|
|
lat0
|
|
],
|
|
[
|
|
lon,
|
|
lat0
|
|
],
|
|
[
|
|
lon,
|
|
lat
|
|
],
|
|
]
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Generates the closest point on a way from a given point
|
|
*
|
|
* The properties object will contain three values:
|
|
// - `index`: closest point was found on nth line part,
|
|
// - `dist`: distance between pt and the closest point (in kilometer),
|
|
// `location`: distance along the line between start (of the line) and the closest point.
|
|
* @param way The road on which you want to find a point
|
|
* @param point Point defined as [lon, lat]
|
|
*/
|
|
public static nearestPoint(way, point: [number, number]) {
|
|
if (way.geometry.type === "Polygon") {
|
|
way = {...way}
|
|
way.geometry = {...way.geometry}
|
|
way.geometry.type = "LineString"
|
|
way.geometry.coordinates = way.geometry.coordinates[0]
|
|
}
|
|
|
|
return turf.nearestPointOnLine(way, point, {units: "kilometers"});
|
|
}
|
|
|
|
public static toCSV(features: any[]): string {
|
|
|
|
const headerValuesSeen = new Set<string>();
|
|
const headerValuesOrdered: string[] = []
|
|
|
|
function addH(key) {
|
|
if (!headerValuesSeen.has(key)) {
|
|
headerValuesSeen.add(key)
|
|
headerValuesOrdered.push(key)
|
|
}
|
|
}
|
|
|
|
addH("_lat")
|
|
addH("_lon")
|
|
|
|
const lines: string[] = []
|
|
|
|
for (const feature of features) {
|
|
const properties = feature.properties;
|
|
for (const key in properties) {
|
|
if (!properties.hasOwnProperty(key)) {
|
|
continue;
|
|
}
|
|
addH(key)
|
|
|
|
}
|
|
}
|
|
headerValuesOrdered.sort()
|
|
for (const feature of features) {
|
|
const properties = feature.properties;
|
|
let line = ""
|
|
for (const key of headerValuesOrdered) {
|
|
const value = properties[key]
|
|
if (value === undefined) {
|
|
line += ","
|
|
} else {
|
|
line += JSON.stringify(value) + ","
|
|
}
|
|
}
|
|
lines.push(line)
|
|
}
|
|
|
|
return headerValuesOrdered.map(v => JSON.stringify(v)).join(",") + "\n" + lines.join("\n")
|
|
}
|
|
|
|
//Converts given lat/lon in WGS84 Datum to XY in Spherical Mercator EPSG:900913
|
|
public static ConvertWgs84To900913(lonLat: [number, number]): [number, number] {
|
|
const lon = lonLat[0];
|
|
const lat = lonLat[1];
|
|
const x = lon * GeoOperations._originShift / 180;
|
|
let y = Math.log(Math.tan((90 + lat) * Math.PI / 360)) / (Math.PI / 180);
|
|
y = y * GeoOperations._originShift / 180;
|
|
return [x, y];
|
|
}
|
|
|
|
//Converts XY point from (Spherical) Web Mercator EPSG:3785 (unofficially EPSG:900913) to lat/lon in WGS84 Datum
|
|
public static Convert900913ToWgs84(lonLat: [number, number]): [number, number] {
|
|
const lon = lonLat[0]
|
|
const lat = lonLat[1]
|
|
const x = 180 * lon / GeoOperations._originShift;
|
|
let y = 180 * lat / GeoOperations._originShift;
|
|
y = 180 / Math.PI * (2 * Math.atan(Math.exp(y * Math.PI / 180)) - Math.PI / 2);
|
|
return [x, y];
|
|
}
|
|
|
|
public static GeoJsonToWGS84(geojson) {
|
|
return turf.toWgs84(geojson)
|
|
}
|
|
|
|
/**
|
|
* Tries to remove points which do not contribute much to the general outline.
|
|
* Points for which the angle is ~ 180° are removed
|
|
* @param coordinates
|
|
* @constructor
|
|
*/
|
|
public static SimplifyCoordinates(coordinates: [number, number][]) {
|
|
const newCoordinates = []
|
|
for (let i = 1; i < coordinates.length - 1; i++) {
|
|
const coordinate = coordinates[i];
|
|
const prev = coordinates[i - 1]
|
|
const next = coordinates[i + 1]
|
|
const b0 = turf.bearing(prev, coordinate, {final: true})
|
|
const b1 = turf.bearing(coordinate, next)
|
|
|
|
const diff = Math.abs(b1 - b0)
|
|
if (diff < 2) {
|
|
continue
|
|
}
|
|
newCoordinates.push(coordinate)
|
|
}
|
|
return newCoordinates
|
|
|
|
}
|
|
|
|
/**
|
|
* Calculates line intersection between two features.
|
|
*/
|
|
public static LineIntersections(feature, otherFeature): [number, number][] {
|
|
return turf.lineIntersect(feature, otherFeature).features.map(p => <[number, number]>p.geometry.coordinates)
|
|
}
|
|
|
|
public static AsGpx(feature: Feature, options?: {layer?: LayerConfig, gpxMetadata?: any }) : string{
|
|
|
|
const metadata = options?.gpxMetadata ?? {}
|
|
metadata["time"] = metadata["time"] ?? new Date().toISOString()
|
|
const tags = feature.properties
|
|
|
|
if (options?.layer !== undefined) {
|
|
|
|
metadata["name"] = options?.layer.title?.GetRenderValue(tags)?.Subs(tags)?.txt
|
|
metadata["desc"] = "Generated with MapComplete layer " + options?.layer.id
|
|
if (tags._backend?.contains("openstreetmap")) {
|
|
metadata["copyright"] = "Data copyrighted by OpenStreetMap-contributors, freely available under ODbL. See https://www.openstreetmap.org/copyright"
|
|
metadata["author"] = tags["_last_edit:contributor"]
|
|
metadata["link"] = "https://www.openstreetmap.org/" + tags.id
|
|
metadata["time"] = tags["_last_edit:timestamp"]
|
|
}
|
|
}
|
|
|
|
return togpx(feature, {
|
|
creator: "MapComplete " + Constants.vNumber,
|
|
metadata
|
|
})
|
|
}
|
|
|
|
public static IdentifieCommonSegments(coordinatess: [number, number][][]): {
|
|
originalIndex: number,
|
|
segmentShardWith: number[],
|
|
coordinates: []
|
|
}[] {
|
|
|
|
// An edge. Note that the edge might be reversed to fix the sorting condition: start[0] < end[0] && (start[0] != end[0] || start[0] < end[1])
|
|
type edge = { start: [number, number], end: [number, number], intermediate: [number, number][], members: { index: number, isReversed: boolean }[] }
|
|
|
|
// The strategy:
|
|
// 1. Index _all_ edges from _every_ linestring. Index them by starting key, gather which relations run over them
|
|
// 2. Join these edges back together - as long as their membership groups are the same
|
|
// 3. Convert to results
|
|
|
|
const allEdgesByKey = new Map<string, edge>()
|
|
|
|
for (let index = 0; index < coordinatess.length; index++) {
|
|
const coordinates = coordinatess[index];
|
|
for (let i = 0; i < coordinates.length - 1; i++) {
|
|
|
|
const c0 = coordinates[i];
|
|
const c1 = coordinates[i + 1]
|
|
const isReversed = (c0[0] > c1[0]) || (c0[0] == c1[0] && c0[1] > c1[1])
|
|
|
|
let key: string
|
|
if (isReversed) {
|
|
key = "" + c1 + ";" + c0
|
|
} else {
|
|
key = "" + c0 + ";" + c1
|
|
}
|
|
const member = {index, isReversed}
|
|
if (allEdgesByKey.has(key)) {
|
|
allEdgesByKey.get(key).members.push(member)
|
|
continue
|
|
}
|
|
|
|
let edge: edge;
|
|
if (!isReversed) {
|
|
edge = {
|
|
start: c0,
|
|
end: c1,
|
|
members: [member],
|
|
intermediate: []
|
|
}
|
|
} else {
|
|
edge = {
|
|
start: c1,
|
|
end: c0,
|
|
members: [member],
|
|
intermediate: []
|
|
}
|
|
}
|
|
allEdgesByKey.set(key, edge)
|
|
|
|
}
|
|
}
|
|
|
|
// Lets merge them back together!
|
|
|
|
let didMergeSomething = false;
|
|
let allMergedEdges = Array.from(allEdgesByKey.values())
|
|
const allEdgesByStartPoint = new Map<string, edge[]>()
|
|
for (const edge of allMergedEdges) {
|
|
|
|
edge.members.sort((m0, m1) => m0.index - m1.index)
|
|
|
|
const kstart = edge.start + ""
|
|
if (!allEdgesByStartPoint.has(kstart)) {
|
|
allEdgesByStartPoint.set(kstart, [])
|
|
}
|
|
allEdgesByStartPoint.get(kstart).push(edge)
|
|
}
|
|
|
|
|
|
function membersAreCompatible(first: edge, second: edge): boolean {
|
|
// There must be an exact match between the members
|
|
if (first.members === second.members) {
|
|
return true
|
|
}
|
|
|
|
if (first.members.length !== second.members.length) {
|
|
return false
|
|
}
|
|
|
|
// Members are sorted and have the same length, so we can check quickly
|
|
for (let i = 0; i < first.members.length; i++) {
|
|
const m0 = first.members[i]
|
|
const m1 = second.members[i]
|
|
if (m0.index !== m1.index || m0.isReversed !== m1.isReversed) {
|
|
return false
|
|
}
|
|
}
|
|
|
|
// Allrigth, they are the same, lets mark this permanently
|
|
second.members = first.members
|
|
return true
|
|
|
|
}
|
|
|
|
do {
|
|
didMergeSomething = false
|
|
// We use 'allMergedEdges' as our running list
|
|
const consumed = new Set<edge>()
|
|
for (const edge of allMergedEdges) {
|
|
// Can we make this edge longer at the end?
|
|
if (consumed.has(edge)) {
|
|
continue
|
|
}
|
|
|
|
console.log("Considering edge", edge)
|
|
const matchingEndEdges = allEdgesByStartPoint.get(edge.end + "")
|
|
console.log("Matchign endpoints:", matchingEndEdges)
|
|
if (matchingEndEdges === undefined) {
|
|
continue
|
|
}
|
|
|
|
|
|
for (let i = 0; i < matchingEndEdges.length; i++) {
|
|
const endEdge = matchingEndEdges[i];
|
|
|
|
if (consumed.has(endEdge)) {
|
|
continue
|
|
}
|
|
|
|
if (!membersAreCompatible(edge, endEdge)) {
|
|
continue
|
|
}
|
|
|
|
// We can make the segment longer!
|
|
didMergeSomething = true
|
|
console.log("Merging ", edge, "with ", endEdge)
|
|
edge.intermediate.push(edge.end)
|
|
edge.end = endEdge.end
|
|
consumed.add(endEdge)
|
|
matchingEndEdges.splice(i, 1)
|
|
break;
|
|
}
|
|
}
|
|
|
|
allMergedEdges = allMergedEdges.filter(edge => !consumed.has(edge));
|
|
|
|
} while (didMergeSomething)
|
|
|
|
return []
|
|
}
|
|
|
|
/**
|
|
* Removes points that do not contribute to the geometry from linestrings and the outer ring of polygons.
|
|
* Returs a new copy of the feature
|
|
*
|
|
* const feature = {"geometry": {"type": "Polygon","coordinates": [[[4.477944199999975,51.02783550000022],[4.477987899999996,51.027818800000034],[4.478004500000021,51.02783399999988],[4.478025499999962,51.02782489999994],[4.478079099999993,51.027873899999896],[4.47801040000006,51.027903799999955],[4.477964799999972,51.02785709999982],[4.477964699999964,51.02785690000006],[4.477944199999975,51.02783550000022]]]}}
|
|
* const copy = GeoOperations.removeOvernoding(feature)
|
|
* expect(copy.geometry.coordinates[0]).deep.equal([[4.477944199999975,51.02783550000022],[4.477987899999996,51.027818800000034],[4.478004500000021,51.02783399999988],[4.478025499999962,51.02782489999994],[4.478079099999993,51.027873899999896],[4.47801040000006,51.027903799999955],[4.477944199999975,51.02783550000022]])
|
|
*/
|
|
static removeOvernoding(feature: any) {
|
|
if (feature.geometry.type !== "LineString" && feature.geometry.type !== "Polygon") {
|
|
throw "Overnode removal is only supported on linestrings and polygons"
|
|
}
|
|
|
|
const copy = {
|
|
...feature,
|
|
geometry: {...feature.geometry}
|
|
}
|
|
let coordinates: [number, number][]
|
|
if (feature.geometry.type === "LineString") {
|
|
coordinates = [...feature.geometry.coordinates]
|
|
copy.geometry.coordinates = coordinates
|
|
} else {
|
|
coordinates = [...feature.geometry.coordinates[0]]
|
|
copy.geometry.coordinates[0] = coordinates
|
|
}
|
|
|
|
// inline replacement in the coordinates list
|
|
for (let i = coordinates.length - 2; i >= 1; i--) {
|
|
const coordinate = coordinates[i];
|
|
const nextCoordinate = coordinates[i + 1]
|
|
const prevCoordinate = coordinates[i - 1]
|
|
|
|
const distP = GeoOperations.distanceBetween(coordinate, prevCoordinate)
|
|
if (distP < 0.1) {
|
|
coordinates.splice(i, 1)
|
|
continue
|
|
}
|
|
|
|
if (i == coordinates.length - 2) {
|
|
const distN = GeoOperations.distanceBetween(coordinate, nextCoordinate)
|
|
if (distN < 0.1) {
|
|
coordinates.splice(i, 1)
|
|
continue
|
|
}
|
|
}
|
|
|
|
const bearingN = turf.bearing(coordinate, nextCoordinate)
|
|
const bearingP = turf.bearing(prevCoordinate, coordinate)
|
|
const diff = Math.abs(bearingN - bearingP)
|
|
if (diff < 4) {
|
|
// If the diff is low, this point is hardly relevant
|
|
coordinates.splice(i, 1)
|
|
} else if (360 - diff < 4) {
|
|
// In case that the line is going south, e.g. bearingN = 179, bearingP = -179
|
|
coordinates.splice(i, 1)
|
|
}
|
|
|
|
}
|
|
return copy;
|
|
|
|
}
|
|
|
|
private static pointWithinRing(x: number, y: number, ring: [number, number][]) {
|
|
let inside = false;
|
|
for (let i = 0, j = ring.length - 1; i < ring.length; j = i++) {
|
|
const coori = ring[i];
|
|
const coorj = ring[j];
|
|
|
|
const xi = coori[0];
|
|
const yi = coori[1];
|
|
const xj = coorj[0];
|
|
const yj = coorj[1];
|
|
|
|
const intersect = ((yi > y) != (yj > y))
|
|
&& (x < (xj - xi) * (y - yi) / (yj - yi) + xi);
|
|
if (intersect) {
|
|
inside = !inside;
|
|
}
|
|
}
|
|
return inside;
|
|
}
|
|
|
|
/**
|
|
* Calculates the intersection between two features.
|
|
* Returns the length if intersecting a linestring and a (multi)polygon (in meters), returns a surface area (in m²) if intersecting two (multi)polygons
|
|
* Returns 0 if both are linestrings
|
|
* Returns null if the features are not intersecting
|
|
*/
|
|
private static calculateInstersection(feature, otherFeature, featureBBox: BBox, otherFeatureBBox?: BBox): number {
|
|
if (feature.geometry.type === "LineString") {
|
|
|
|
|
|
otherFeatureBBox = otherFeatureBBox ?? BBox.get(otherFeature);
|
|
const overlaps = featureBBox.overlapsWith(otherFeatureBBox)
|
|
if (!overlaps) {
|
|
return null;
|
|
}
|
|
|
|
// Calculate the length of the intersection
|
|
|
|
|
|
let intersectionPoints = turf.lineIntersect(feature, otherFeature);
|
|
if (intersectionPoints.features.length == 0) {
|
|
// No intersections.
|
|
// If one point is inside of the polygon, all points are
|
|
|
|
|
|
const coors = feature.geometry.coordinates;
|
|
const startCoor = coors[0]
|
|
if (this.inside(startCoor, otherFeature)) {
|
|
return this.lengthInMeters(feature)
|
|
}
|
|
|
|
return null;
|
|
}
|
|
let intersectionPointsArray = intersectionPoints.features.map(d => {
|
|
return d.geometry.coordinates
|
|
});
|
|
|
|
if (otherFeature.geometry.type === "LineString") {
|
|
if (intersectionPointsArray.length > 0) {
|
|
return 0
|
|
}
|
|
return null;
|
|
}
|
|
if (intersectionPointsArray.length == 1) {
|
|
// We need to add the start- or endpoint of the current feature, depending on which one is embedded
|
|
const coors = feature.geometry.coordinates;
|
|
const startCoor = coors[0]
|
|
if (this.inside(startCoor, otherFeature)) {
|
|
// The startpoint is embedded
|
|
intersectionPointsArray.push(startCoor)
|
|
} else {
|
|
intersectionPointsArray.push(coors[coors.length - 1])
|
|
}
|
|
}
|
|
|
|
let intersection = turf.lineSlice(turf.point(intersectionPointsArray[0]), turf.point(intersectionPointsArray[1]), feature);
|
|
|
|
if (intersection == null) {
|
|
return null;
|
|
}
|
|
const intersectionSize = turf.length(intersection); // in km
|
|
return intersectionSize * 1000
|
|
|
|
|
|
}
|
|
|
|
if (feature.geometry.type === "Polygon" || feature.geometry.type === "MultiPolygon") {
|
|
const otherFeatureBBox = BBox.get(otherFeature);
|
|
const overlaps = featureBBox.overlapsWith(otherFeatureBBox)
|
|
if (!overlaps) {
|
|
return null;
|
|
}
|
|
if (otherFeature.geometry.type === "LineString") {
|
|
return this.calculateInstersection(otherFeature, feature, otherFeatureBBox, featureBBox)
|
|
}
|
|
|
|
try {
|
|
|
|
const intersection = turf.intersect(feature, otherFeature);
|
|
if (intersection == null) {
|
|
return null;
|
|
}
|
|
return turf.area(intersection); // in m²
|
|
} catch (e) {
|
|
if (e.message === "Each LinearRing of a Polygon must have 4 or more Positions.") {
|
|
// WORKAROUND TIME!
|
|
// See https://github.com/Turfjs/turf/pull/2238
|
|
return null;
|
|
}
|
|
throw e;
|
|
}
|
|
|
|
}
|
|
throw "CalculateIntersection fallthrough: can not calculate an intersection between features"
|
|
|
|
}
|
|
|
|
/**
|
|
* Takes two points and finds the geographic bearing between them, i.e. the angle measured in degrees from the north line (0 degrees)
|
|
*/
|
|
public static bearing(a: Coord, b: Coord): number {
|
|
return turf.bearing(a, b)
|
|
}
|
|
|
|
/**
|
|
* Returns 'true' if one feature contains the other feature
|
|
*
|
|
* const pond: Feature<Polygon, any> = {
|
|
* "type": "Feature",
|
|
* "properties": {"natural":"water","water":"pond"},
|
|
* "geometry": {
|
|
* "type": "Polygon",
|
|
* "coordinates": [[
|
|
* [4.362924098968506,50.8435422298544 ],
|
|
* [4.363272786140442,50.8435219059949 ],
|
|
* [4.363213777542114,50.8437420806679 ],
|
|
* [4.362924098968506,50.8435422298544 ]
|
|
* ]]}}
|
|
* const park: Feature<Polygon, any> = {
|
|
* "type": "Feature",
|
|
* "properties": {"leisure":"park"},
|
|
* "geometry": {
|
|
* "type": "Polygon",
|
|
* "coordinates": [[
|
|
* [ 4.36073541641235,50.84323737103244 ],
|
|
* [ 4.36469435691833, 50.8423905305197 ],
|
|
* [ 4.36659336090087, 50.8458997374786 ],
|
|
* [ 4.36254858970642, 50.8468007074916 ],
|
|
* [ 4.36073541641235, 50.8432373710324 ]
|
|
* ]]}}
|
|
* GeoOperations.completelyWithin(pond, park) // => true
|
|
* GeoOperations.completelyWithin(park, pond) // => false
|
|
*/
|
|
static completelyWithin(feature: Feature<Geometry, any>, possiblyEncloingFeature: Feature<Polygon | MultiPolygon, any>) : boolean {
|
|
return booleanWithin(feature, possiblyEncloingFeature);
|
|
}
|
|
}
|
|
|
|
|