MapComplete/Models/TileRange.ts

117 lines
3.6 KiB
TypeScript
Raw Normal View History

import {control} from "leaflet";
2021-11-07 16:34:51 +01:00
2021-07-10 20:56:59 +02:00
export interface TileRange {
xstart: number,
ystart: number,
xend: number,
yend: number,
total: number,
zoomlevel: number
}
export class Tiles {
public static MapRange<T>(tileRange: TileRange, f: (x: number, y: number) => T): T[] {
const result: T[] = []
2021-10-01 04:49:40 +02:00
const total = tileRange.total
2021-11-07 16:34:51 +01:00
if (total > 100000) {
2021-10-01 04:49:40 +02:00
throw "Tilerange too big"
}
for (let x = tileRange.xstart; x <= tileRange.xend; x++) {
for (let y = tileRange.ystart; y <= tileRange.yend; y++) {
const t = f(x, y);
result.push(t)
}
}
return result;
}
/**
* Calculates the tile bounds of the
* @param z
* @param x
* @param y
* @returns [[maxlat, minlon], [minlat, maxlon]]
*/
static tile_bounds(z: number, x: number, y: number): [[number, number], [number, number]] {
return [[Tiles.tile2lat(y, z), Tiles.tile2long(x, z)], [Tiles.tile2lat(y + 1, z), Tiles.tile2long(x + 1, z)]]
}
static tile_bounds_lon_lat(z: number, x: number, y: number): [[number, number], [number, number]] {
return [[Tiles.tile2long(x, z), Tiles.tile2lat(y, z)], [Tiles.tile2long(x + 1, z), Tiles.tile2lat(y + 1, z)]]
}
/**
* Returns the centerpoint [lon, lat] of the specified tile
* @param z
* @param x
* @param y
*/
2021-11-07 16:34:51 +01:00
static centerPointOf(z: number, x: number, y: number): [number, number] {
return [(Tiles.tile2long(x, z) + Tiles.tile2long(x + 1, z)) / 2, (Tiles.tile2lat(y, z) + Tiles.tile2lat(y + 1, z)) / 2]
}
2021-11-07 16:34:51 +01:00
static tile_index(z: number, x: number, y: number): number {
return ((x * (2 << z)) + y) * 100 + z
}
2021-11-07 16:34:51 +01:00
/**
* Given a tile index number, returns [z, x, y]
* @param index
* @returns 'zxy'
*/
static tile_from_index(index: number): [number, number, number] {
const z = index % 100;
const factor = 2 << z
index = Math.floor(index / 100)
const x = Math.floor(index / factor)
return [z, x, index % factor]
}
/**
* Return x, y of the tile containing (lat, lon) on the given zoom level
*/
static embedded_tile(lat: number, lon: number, z: number): { x: number, y: number, z: number } {
return {x: Tiles.lon2tile(lon, z), y: Tiles.lat2tile(lat, z), z: z}
}
2021-11-07 16:34:51 +01:00
static TileRangeBetween(zoomlevel: number, lat0: number, lon0: number, lat1: number, lon1: number): TileRange {
const t0 = Tiles.embedded_tile(lat0, lon0, zoomlevel)
const t1 = Tiles.embedded_tile(lat1, lon1, zoomlevel)
const xstart = Math.min(t0.x, t1.x)
const xend = Math.max(t0.x, t1.x)
const ystart = Math.min(t0.y, t1.y)
const yend = Math.max(t0.y, t1.y)
const total = (1 + xend - xstart) * (1 + yend - ystart)
return {
xstart: xstart,
xend: xend,
ystart: ystart,
yend: yend,
total: total,
zoomlevel: zoomlevel
}
}
2021-11-07 16:34:51 +01:00
private static tile2long(x, z) {
return (x / Math.pow(2, z) * 360 - 180);
}
private static tile2lat(y, z) {
const n = Math.PI - 2 * Math.PI * y / Math.pow(2, z);
return (180 / Math.PI * Math.atan(0.5 * (Math.exp(n) - Math.exp(-n))));
}
private static lon2tile(lon, zoom) {
return (Math.floor((lon + 180) / 360 * Math.pow(2, zoom)));
}
private static lat2tile(lat, zoom) {
return (Math.floor((1 - Math.log(Math.tan(lat * Math.PI / 180) + 1 / Math.cos(lat * Math.PI / 180)) / Math.PI) / 2 * Math.pow(2, zoom)));
}
2021-07-10 20:56:59 +02:00
}