forked from MapComplete/MapComplete
		
	
		
			
				
	
	
		
			617 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			TypeScript
		
	
	
	
	
	
			
		
		
	
	
			617 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			TypeScript
		
	
	
	
	
	
| import * as turf from '@turf/turf'
 | |
| import {BBox} from "./BBox";
 | |
| import togpx from "togpx"
 | |
| import Constants from "../Models/Constants";
 | |
| import LayerConfig from "../Models/ThemeConfig/LayerConfig";
 | |
| 
 | |
| export class GeoOperations {
 | |
| 
 | |
|     private static readonly _earthRadius = 6378137;
 | |
|     private static readonly _originShift = 2 * Math.PI * GeoOperations._earthRadius / 2;
 | |
| 
 | |
|     static surfaceAreaInSqMeters(feature: any) {
 | |
|         return turf.area(feature);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Converts a GeoJson feature to a point GeoJson feature
 | |
|      * @param feature
 | |
|      */
 | |
|     static centerpoint(feature: any) {
 | |
|         const newFeature = turf.center(feature);
 | |
|         newFeature.properties = feature.properties;
 | |
|         newFeature.id = feature.id;
 | |
|         return newFeature;
 | |
|     }
 | |
| 
 | |
|     static centerpointCoordinates(feature: any): [number, number] {
 | |
|         return <[number, number]> turf.center(feature).geometry.coordinates;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the distance between the two points in meters
 | |
|      * @param lonlat0
 | |
|      * @param lonlat1
 | |
|      */
 | |
|     static distanceBetween(lonlat0: [number, number], lonlat1: [number, number]) {
 | |
|         return turf.distance(lonlat0, lonlat1, {units: "meters"})
 | |
|     }
 | |
| 
 | |
|     static convexHull(featureCollection, options: {concavity?: number}){
 | |
|         return turf.convex(featureCollection, options)
 | |
|     }
 | |
|     
 | |
|     /**
 | |
|      * Calculates the overlap of 'feature' with every other specified feature.
 | |
|      * The features with which 'feature' overlaps, are returned together with their overlap area in m²
 | |
|      *
 | |
|      * If 'feature' is a LineString, the features in which this feature is (partly) embedded is returned, the overlap length in meter is given
 | |
|      * If 'feature' is a Polygon, overlapping points and points within the polygon will be returned
 | |
|      *
 | |
|      * If 'feature' is a point, it will return every feature the point is embedded in. Overlap will be undefined
 | |
|      *
 | |
|      */
 | |
|     static calculateOverlap(feature: any, otherFeatures: any[]): { feat: any, overlap: number }[] {
 | |
| 
 | |
|         const featureBBox = BBox.get(feature);
 | |
|         const result: { feat: any, overlap: number }[] = [];
 | |
|         if (feature.geometry.type === "Point") {
 | |
|             const coor = feature.geometry.coordinates;
 | |
|             for (const otherFeature of otherFeatures) {
 | |
| 
 | |
|                 if (feature.id !== undefined && feature.id === otherFeature.id) {
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 if (otherFeature.geometry === undefined) {
 | |
|                     console.error("No geometry for feature ", feature)
 | |
|                     throw "List of other features contains a feature without geometry an undefined"
 | |
|                 }
 | |
| 
 | |
|                 if (GeoOperations.inside(coor, otherFeature)) {
 | |
|                     result.push({feat: otherFeature, overlap: undefined})
 | |
|                 }
 | |
|             }
 | |
|             return result;
 | |
|         }
 | |
| 
 | |
|         if (feature.geometry.type === "LineString") {
 | |
| 
 | |
|             for (const otherFeature of otherFeatures) {
 | |
| 
 | |
|                 if (feature.id !== undefined && feature.id === otherFeature.id) {
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 const intersection = GeoOperations.calculateInstersection(feature, otherFeature, featureBBox)
 | |
|                 if (intersection === null) {
 | |
|                     continue
 | |
|                 }
 | |
|                 result.push({feat: otherFeature, overlap: intersection})
 | |
| 
 | |
|             }
 | |
|             return result;
 | |
|         }
 | |
| 
 | |
|         if (feature.geometry.type === "Polygon" || feature.geometry.type === "MultiPolygon") {
 | |
| 
 | |
|             for (const otherFeature of otherFeatures) {
 | |
| 
 | |
|                 if (feature.id === otherFeature.id) {
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 if (otherFeature.geometry.type === "Point") {
 | |
|                     if (this.inside(otherFeature, feature)) {
 | |
|                         result.push({feat: otherFeature, overlap: undefined})
 | |
|                     }
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
| 
 | |
|                 // Calculate the surface area of the intersection
 | |
| 
 | |
|                 const intersection = this.calculateInstersection(feature, otherFeature, featureBBox)
 | |
|                 if (intersection === null) {
 | |
|                     continue;
 | |
|                 }
 | |
|                 result.push({feat: otherFeature, overlap: intersection})
 | |
| 
 | |
|             }
 | |
|             return result;
 | |
|         }
 | |
|         console.error("Could not correctly calculate the overlap of ", feature, ": unsupported type")
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     public static inside(pointCoordinate, feature): boolean {
 | |
|         // ray-casting algorithm based on
 | |
|         // http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
 | |
| 
 | |
|         if (feature.geometry.type === "Point") {
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         if (pointCoordinate.geometry !== undefined) {
 | |
|             pointCoordinate = pointCoordinate.geometry.coordinates
 | |
|         }
 | |
| 
 | |
|         if (feature.geometry.type === "MultiPolygon") {
 | |
|             const coordinates = feature.geometry.coordinates[0];
 | |
|             const outerPolygon = coordinates[0];
 | |
|             const inside = GeoOperations.inside(pointCoordinate, {
 | |
|                 geometry: {
 | |
|                     type: 'Polygon',
 | |
|                     coordinates: [outerPolygon]
 | |
|                 }
 | |
|             })
 | |
|             if (!inside) {
 | |
|                 return false;
 | |
|             }
 | |
|             for (let i = 1; i < coordinates.length; i++) {
 | |
|                 const inHole = GeoOperations.inside(pointCoordinate, {
 | |
|                     geometry: {
 | |
|                         type: 'Polygon',
 | |
|                         coordinates: [coordinates[i]]
 | |
|                     }
 | |
|                 })
 | |
|                 if (inHole) {
 | |
|                     return false;
 | |
|                 }
 | |
|             }
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         const x: number = pointCoordinate[0];
 | |
|         const y: number = pointCoordinate[1];
 | |
| 
 | |
|         for (let i = 0; i < feature.geometry.coordinates.length; i++) {
 | |
|             let poly = feature.geometry.coordinates[i];
 | |
| 
 | |
|             let inside = false;
 | |
|             for (let i = 0, j = poly.length - 1; i < poly.length; j = i++) {
 | |
|                 const coori = poly[i];
 | |
|                 const coorj = poly[j];
 | |
| 
 | |
|                 const xi = coori[0];
 | |
|                 const yi = coori[1];
 | |
|                 const xj = coorj[0];
 | |
|                 const yj = coorj[1];
 | |
| 
 | |
|                 const intersect = ((yi > y) != (yj > y))
 | |
|                     && (x < (xj - xi) * (y - yi) / (yj - yi) + xi);
 | |
|                 if (intersect) {
 | |
|                     inside = !inside;
 | |
|                 }
 | |
|             }
 | |
|             if (inside) {
 | |
|                 return true;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return false;
 | |
|     };
 | |
| 
 | |
|     static lengthInMeters(feature: any) {
 | |
|         return turf.length(feature) * 1000
 | |
|     }
 | |
| 
 | |
|     static buffer(feature: any, bufferSizeInMeter: number) {
 | |
|         return turf.buffer(feature, bufferSizeInMeter / 1000, {
 | |
|             units:'kilometers'
 | |
|         } )
 | |
|     }
 | |
| 
 | |
|     static bbox(feature: any) {
 | |
|         const [lon, lat, lon0, lat0] = turf.bbox(feature)
 | |
|         return {
 | |
|             "type": "Feature",
 | |
|             "geometry": {
 | |
|                 "type": "LineString",
 | |
|                 "coordinates": [
 | |
|                     [
 | |
|                         lon,
 | |
|                         lat
 | |
|                     ],
 | |
|                     [
 | |
|                         lon0,
 | |
|                         lat
 | |
|                     ],
 | |
|                     [
 | |
|                         lon0,
 | |
|                         lat0
 | |
|                     ],
 | |
|                     [
 | |
|                         lon,
 | |
|                         lat0
 | |
|                     ],
 | |
|                     [
 | |
|                         lon,
 | |
|                         lat
 | |
|                     ],
 | |
|                 ]
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Generates the closest point on a way from a given point
 | |
|      *
 | |
|      *  The properties object will contain three values:
 | |
|      // - `index`: closest point was found on nth line part,
 | |
|      // - `dist`: distance between pt and the closest point (in kilometer),
 | |
|      // `location`: distance along the line between start (of the line) and the closest point.
 | |
|      * @param way The road on which you want to find a point
 | |
|      * @param point Point defined as [lon, lat]
 | |
|      */
 | |
|     public static nearestPoint(way, point: [number, number]) {
 | |
|         if (way.geometry.type === "Polygon") {
 | |
|             way = {...way}
 | |
|             way.geometry = {...way.geometry}
 | |
|             way.geometry.type = "LineString"
 | |
|             way.geometry.coordinates = way.geometry.coordinates[0]
 | |
|         }
 | |
| 
 | |
|         return turf.nearestPointOnLine(way, point, {units: "kilometers"});
 | |
|     }
 | |
| 
 | |
|     public static toCSV(features: any[]): string {
 | |
| 
 | |
|         const headerValuesSeen = new Set<string>();
 | |
|         const headerValuesOrdered: string[] = []
 | |
| 
 | |
|         function addH(key) {
 | |
|             if (!headerValuesSeen.has(key)) {
 | |
|                 headerValuesSeen.add(key)
 | |
|                 headerValuesOrdered.push(key)
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         addH("_lat")
 | |
|         addH("_lon")
 | |
| 
 | |
|         const lines: string[] = []
 | |
| 
 | |
|         for (const feature of features) {
 | |
|             const properties = feature.properties;
 | |
|             for (const key in properties) {
 | |
|                 if (!properties.hasOwnProperty(key)) {
 | |
|                     continue;
 | |
|                 }
 | |
|                 addH(key)
 | |
| 
 | |
|             }
 | |
|         }
 | |
|         headerValuesOrdered.sort()
 | |
|         for (const feature of features) {
 | |
|             const properties = feature.properties;
 | |
|             let line = ""
 | |
|             for (const key of headerValuesOrdered) {
 | |
|                 const value = properties[key]
 | |
|                 if (value === undefined) {
 | |
|                     line += ","
 | |
|                 } else {
 | |
|                     line += JSON.stringify(value) + ","
 | |
|                 }
 | |
|             }
 | |
|             lines.push(line)
 | |
|         }
 | |
| 
 | |
|         return headerValuesOrdered.map(v => JSON.stringify(v)).join(",") + "\n" + lines.join("\n")
 | |
|     }
 | |
| 
 | |
|     //Converts given lat/lon in WGS84 Datum to XY in Spherical Mercator EPSG:900913
 | |
|     public static ConvertWgs84To900913(lonLat: [number, number]): [number, number] {
 | |
|         const lon = lonLat[0];
 | |
|         const lat = lonLat[1];
 | |
|         const x = lon * GeoOperations._originShift / 180;
 | |
|         let y = Math.log(Math.tan((90 + lat) * Math.PI / 360)) / (Math.PI / 180);
 | |
|         y = y * GeoOperations._originShift / 180;
 | |
|         return [x, y];
 | |
|     }
 | |
| 
 | |
|     //Converts XY point from (Spherical) Web Mercator EPSG:3785 (unofficially EPSG:900913) to lat/lon in WGS84 Datum
 | |
|     public static Convert900913ToWgs84(lonLat: [number, number]): [number, number] {
 | |
|         const lon = lonLat[0]
 | |
|         const lat = lonLat[1]
 | |
|         const x = 180 * lon / GeoOperations._originShift;
 | |
|         let y = 180 * lat / GeoOperations._originShift;
 | |
|         y = 180 / Math.PI * (2 * Math.atan(Math.exp(y * Math.PI / 180)) - Math.PI / 2);
 | |
|         return [x, y];
 | |
|     }
 | |
| 
 | |
|     public static GeoJsonToWGS84(geojson) {
 | |
|         return turf.toWgs84(geojson)
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Tries to remove points which do not contribute much to the general outline.
 | |
|      * Points for which the angle is ~ 180° are removed
 | |
|      * @param coordinates
 | |
|      * @constructor
 | |
|      */
 | |
|     public static SimplifyCoordinates(coordinates: [number, number][]) {
 | |
|         const newCoordinates = []
 | |
|         for (let i = 1; i < coordinates.length - 1; i++) {
 | |
|             const coordinate = coordinates[i];
 | |
|             const prev = coordinates[i - 1]
 | |
|             const next = coordinates[i + 1]
 | |
|             const b0 = turf.bearing(prev, coordinate, {final: true})
 | |
|             const b1 = turf.bearing(coordinate, next)
 | |
| 
 | |
|             const diff = Math.abs(b1 - b0)
 | |
|             if (diff < 2) {
 | |
|                 continue
 | |
|             }
 | |
|             newCoordinates.push(coordinate)
 | |
|         }
 | |
|         return newCoordinates
 | |
| 
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Calculates the intersection between two features.
 | |
|      * Returns the length if intersecting a linestring and a (multi)polygon (in meters), returns a surface area (in m²) if intersecting two (multi)polygons
 | |
|      * Returns 0 if both are linestrings
 | |
|      * Returns null if the features are not intersecting
 | |
|      */
 | |
|     static calculateInstersection(feature, otherFeature, featureBBox: BBox, otherFeatureBBox?: BBox): number {
 | |
|         try {
 | |
|             if (feature.geometry.type === "LineString") {
 | |
| 
 | |
| 
 | |
|                 otherFeatureBBox = otherFeatureBBox ?? BBox.get(otherFeature);
 | |
|                 const overlaps = featureBBox.overlapsWith(otherFeatureBBox)
 | |
|                 if (!overlaps) {
 | |
|                     return null;
 | |
|                 }
 | |
| 
 | |
|                 // Calculate the length of the intersection
 | |
| 
 | |
| 
 | |
|                 let intersectionPoints = turf.lineIntersect(feature, otherFeature);
 | |
|                 if (intersectionPoints.features.length == 0) {
 | |
|                     // No intersections.
 | |
|                     // If one point is inside of the polygon, all points are
 | |
| 
 | |
| 
 | |
|                     const coors = feature.geometry.coordinates;
 | |
|                     const startCoor = coors[0]
 | |
|                     if (this.inside(startCoor, otherFeature)) {
 | |
|                         return this.lengthInMeters(feature)
 | |
|                     }
 | |
| 
 | |
|                     return null;
 | |
|                 }
 | |
|                 let intersectionPointsArray = intersectionPoints.features.map(d => {
 | |
|                     return d.geometry.coordinates
 | |
|                 });
 | |
| 
 | |
|                 if (otherFeature.geometry.type === "LineString") {
 | |
|                     if (intersectionPointsArray.length > 0) {
 | |
|                         return 0
 | |
|                     }
 | |
|                     return null;
 | |
|                 }
 | |
|                 if (intersectionPointsArray.length == 1) {
 | |
|                     // We need to add the start- or endpoint of the current feature, depending on which one is embedded
 | |
|                     const coors = feature.geometry.coordinates;
 | |
|                     const startCoor = coors[0]
 | |
|                     if (this.inside(startCoor, otherFeature)) {
 | |
|                         // The startpoint is embedded
 | |
|                         intersectionPointsArray.push(startCoor)
 | |
|                     } else {
 | |
|                         intersectionPointsArray.push(coors[coors.length - 1])
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 let intersection = turf.lineSlice(turf.point(intersectionPointsArray[0]), turf.point(intersectionPointsArray[1]), feature);
 | |
| 
 | |
|                 if (intersection == null) {
 | |
|                     return null;
 | |
|                 }
 | |
|                 const intersectionSize = turf.length(intersection); // in km
 | |
|                 return intersectionSize * 1000
 | |
| 
 | |
| 
 | |
|             }
 | |
| 
 | |
|             if (feature.geometry.type === "Polygon" || feature.geometry.type === "MultiPolygon") {
 | |
|                 const otherFeatureBBox = BBox.get(otherFeature);
 | |
|                 const overlaps = featureBBox.overlapsWith(otherFeatureBBox)
 | |
|                 if (!overlaps) {
 | |
|                     return null;
 | |
|                 }
 | |
|                 if (otherFeature.geometry.type === "LineString") {
 | |
|                     return this.calculateInstersection(otherFeature, feature, otherFeatureBBox, featureBBox)
 | |
|                 }
 | |
| 
 | |
|                 const intersection = turf.intersect(feature, otherFeature);
 | |
|                 if (intersection == null) {
 | |
|                     return null;
 | |
|                 }
 | |
|                 return turf.area(intersection); // in m²
 | |
| 
 | |
|             }
 | |
| 
 | |
|         } catch (exception) {
 | |
|             console.warn("EXCEPTION CAUGHT WHILE INTERSECTING: ", exception,"\nThe considered objects are",feature, otherFeature);
 | |
|             return undefined
 | |
|         }
 | |
|         return undefined;
 | |
|     }
 | |
| 
 | |
|     public static AsGpx(feature, generatedWithLayer?: LayerConfig){
 | |
|         
 | |
|         const metadata = {}
 | |
|         const tags = feature.properties
 | |
|         
 | |
|         if(generatedWithLayer !== undefined){
 | |
|             
 | |
|             metadata["name"] = generatedWithLayer.title?.GetRenderValue(tags)?.Subs(tags)?.txt
 | |
|             metadata["desc"] = "Generated with MapComplete layer "+generatedWithLayer.id
 | |
|             if(tags._backend?.contains("openstreetmap")){
 | |
|                 metadata["copyright"]= "Data copyrighted by OpenStreetMap-contributors, freely available under ODbL. See https://www.openstreetmap.org/copyright"
 | |
|                 metadata["author"] = tags["_last_edit:contributor"]
 | |
|                 metadata["link"]= "https://www.openstreetmap.org/"+tags.id
 | |
|                 metadata["time"] = tags["_last_edit:timestamp"]
 | |
|             }else{
 | |
|                 metadata["time"] = new Date().toISOString()
 | |
|             }
 | |
|         }
 | |
|         
 | |
|         return togpx(feature, {
 | |
|             creator: "MapComplete "+Constants.vNumber,
 | |
|             metadata
 | |
|         })
 | |
|     }
 | |
|     
 | |
|     public static IdentifieCommonSegments(coordinatess: [number,number][][] ): {
 | |
|         originalIndex: number,
 | |
|         segmentShardWith: number[],
 | |
|         coordinates: []
 | |
|     }[]{
 | |
|         
 | |
|         // An edge. Note that the edge might be reversed to fix the sorting condition:  start[0] < end[0] && (start[0] != end[0] || start[0] < end[1])
 | |
|         type edge = {start: [number, number], end: [number, number], intermediate: [number,number][], members: {index:number, isReversed: boolean}[]}
 | |
| 
 | |
|         // The strategy:
 | |
|         // 1. Index _all_ edges from _every_ linestring. Index them by starting key, gather which relations run over them
 | |
|         // 2. Join these edges back together - as long as their membership groups are the same
 | |
|         // 3. Convert to results
 | |
|         
 | |
|         const allEdgesByKey = new Map<string, edge>()
 | |
| 
 | |
|         for (let index = 0; index < coordinatess.length; index++){
 | |
|             const coordinates = coordinatess[index];
 | |
|             for (let i = 0; i < coordinates.length - 1; i++){
 | |
|                 
 | |
|                 const c0 = coordinates[i];
 | |
|                 const c1 = coordinates[i + 1]
 | |
|                 const isReversed = (c0[0] > c1[0]) || (c0[0] == c1[0] && c0[1] > c1[1])
 | |
|                 
 | |
|                 let key : string
 | |
|                 if(isReversed){
 | |
|                     key = ""+c1+";"+c0
 | |
|                 }else{
 | |
|                     key = ""+c0+";"+c1
 | |
|                 }
 | |
|                 const member = {index, isReversed}
 | |
|                 if(allEdgesByKey.has(key)){
 | |
|                     allEdgesByKey.get(key).members.push(member)
 | |
|                     continue
 | |
|                 }
 | |
|                 
 | |
|                 let edge : edge;
 | |
|                 if(!isReversed){
 | |
|                     edge = {
 | |
|                         start : c0,
 | |
|                         end: c1,
 | |
|                         members: [member],
 | |
|                         intermediate: []
 | |
|                     }
 | |
|                 }else{
 | |
|                     edge = {
 | |
|                         start : c1,
 | |
|                         end: c0,
 | |
|                         members: [member],
 | |
|                         intermediate: []
 | |
|                     }
 | |
|                 }
 | |
|                 allEdgesByKey.set(key, edge)
 | |
|                 
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Lets merge them back together!
 | |
|         
 | |
|         let didMergeSomething = false;
 | |
|         let allMergedEdges = Array.from(allEdgesByKey.values())
 | |
|         const allEdgesByStartPoint = new Map<string, edge[]>()
 | |
|         for (const edge of allMergedEdges) {
 | |
|             
 | |
|             edge.members.sort((m0, m1) => m0.index - m1.index)
 | |
|             
 | |
|             const kstart = edge.start+""
 | |
|             if(!allEdgesByStartPoint.has(kstart)){
 | |
|                 allEdgesByStartPoint.set(kstart, [])
 | |
|             }
 | |
|             allEdgesByStartPoint.get(kstart).push(edge)
 | |
|         }
 | |
|         
 | |
|         
 | |
|         function membersAreCompatible(first:edge, second:edge): boolean{
 | |
|             // There must be an exact match between the members
 | |
|             if(first.members === second.members){
 | |
|                 return true
 | |
|             }
 | |
|             
 | |
|             if(first.members.length !== second.members.length){
 | |
|                 return false
 | |
|             }
 | |
|             
 | |
|             // Members are sorted and have the same length, so we can check quickly
 | |
|             for (let i = 0; i < first.members.length; i++) {
 | |
|                 const m0 = first.members[i]
 | |
|                 const m1 = second.members[i]
 | |
|                 if(m0.index !== m1.index || m0.isReversed !== m1.isReversed){
 | |
|                     return false
 | |
|                 }
 | |
|             }
 | |
|             
 | |
|             // Allrigth, they are the same, lets mark this permanently
 | |
|             second.members = first.members
 | |
|             return true
 | |
|             
 | |
|         }
 | |
|         
 | |
|         do{
 | |
|             didMergeSomething = false
 | |
|             // We use 'allMergedEdges' as our running list
 | |
|             const consumed = new Set<edge>()
 | |
|             for (const edge of allMergedEdges) {
 | |
|                 // Can we make this edge longer at the end?
 | |
|                 if(consumed.has(edge)){
 | |
|                     continue
 | |
|                 }
 | |
|                 
 | |
|                 console.log("Considering edge", edge)
 | |
|                 const matchingEndEdges = allEdgesByStartPoint.get(edge.end+"") 
 | |
|                 console.log("Matchign endpoints:", matchingEndEdges)
 | |
|                 if(matchingEndEdges === undefined){
 | |
|                     continue
 | |
|                 }
 | |
|                 
 | |
|                 
 | |
|                 for (let i = 0; i < matchingEndEdges.length; i++){
 | |
|                     const endEdge = matchingEndEdges[i];
 | |
|                     
 | |
|                     if(consumed.has(endEdge)){
 | |
|                         continue
 | |
|                     }
 | |
|                     
 | |
|                     if(!membersAreCompatible(edge, endEdge)){
 | |
|                         continue
 | |
|                     }
 | |
|                     
 | |
|                     // We can make the segment longer!
 | |
|                     didMergeSomething = true
 | |
|                     console.log("Merging ", edge, "with ", endEdge)
 | |
|                     edge.intermediate.push(edge.end)
 | |
|                     edge.end = endEdge.end
 | |
|                     consumed.add(endEdge)
 | |
|                     matchingEndEdges.splice(i, 1)
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             
 | |
|             allMergedEdges = allMergedEdges.filter(edge => !consumed.has(edge));
 | |
|             
 | |
|         }while(didMergeSomething)
 | |
|         
 | |
|         return []
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 |