forked from MapComplete/MapComplete
489 lines
No EOL
15 KiB
TypeScript
489 lines
No EOL
15 KiB
TypeScript
import * as turf from '@turf/turf'
|
|
import {Utils} from "../Utils";
|
|
|
|
export class GeoOperations {
|
|
|
|
static surfaceAreaInSqMeters(feature: any) {
|
|
return turf.area(feature);
|
|
}
|
|
|
|
/**
|
|
* Converts a GeoJSon feature to a point feature
|
|
* @param feature
|
|
*/
|
|
static centerpoint(feature: any) {
|
|
const newFeature = turf.center(feature);
|
|
newFeature.properties = feature.properties;
|
|
newFeature.id = feature.id;
|
|
return newFeature;
|
|
}
|
|
|
|
static centerpointCoordinates(feature: any): [number, number] {
|
|
// @ts-ignore
|
|
return turf.center(feature).geometry.coordinates;
|
|
}
|
|
|
|
/**
|
|
* Returns the distance between the two points in kilometers
|
|
* @param lonlat0
|
|
* @param lonlat1
|
|
*/
|
|
static distanceBetween(lonlat0: [number, number], lonlat1: [number, number]) {
|
|
return turf.distance(lonlat0, lonlat1)
|
|
}
|
|
|
|
/**
|
|
* Calculates the overlap of 'feature' with every other specified feature.
|
|
* The features with which 'feature' overlaps, are returned together with their overlap area in m²
|
|
*
|
|
* If 'feature' is a LineString, the features in which this feature is (partly) embedded is returned, the overlap length in meter is given
|
|
*
|
|
* If 'feature' is a point, it will return every feature the point is embedded in. Overlap will be undefined
|
|
*/
|
|
static calculateOverlap(feature: any, otherFeatures: any[]): { feat: any, overlap: number }[] {
|
|
|
|
const featureBBox = BBox.get(feature);
|
|
const result: { feat: any, overlap: number }[] = [];
|
|
if (feature.geometry.type === "Point") {
|
|
const coor = feature.geometry.coordinates;
|
|
for (const otherFeature of otherFeatures) {
|
|
|
|
if (feature.id !== undefined && feature.id === otherFeature.id) {
|
|
continue;
|
|
}
|
|
|
|
if (otherFeature.geometry === undefined) {
|
|
console.error("No geometry for feature ", feature)
|
|
throw "List of other features contains a feature without geometry an undefined"
|
|
}
|
|
|
|
if (GeoOperations.inside(coor, otherFeature)) {
|
|
result.push({feat: otherFeature, overlap: undefined})
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
if (feature.geometry.type === "LineString") {
|
|
|
|
for (const otherFeature of otherFeatures) {
|
|
|
|
if (feature.id !== undefined && feature.id === otherFeature.id) {
|
|
continue;
|
|
}
|
|
|
|
const intersection = this.calculateInstersection(feature, otherFeature, featureBBox)
|
|
if (intersection === null) {
|
|
continue
|
|
}
|
|
result.push({feat: otherFeature, overlap: intersection})
|
|
|
|
}
|
|
return result;
|
|
}
|
|
|
|
if (feature.geometry.type === "Polygon" || feature.geometry.type === "MultiPolygon") {
|
|
|
|
for (const otherFeature of otherFeatures) {
|
|
|
|
if (feature.id === otherFeature.id) {
|
|
continue;
|
|
}
|
|
|
|
if (otherFeature.geometry.type === "Point") {
|
|
if (this.inside(otherFeature, feature)) {
|
|
result.push({feat: otherFeature, overlap: undefined})
|
|
}
|
|
continue;
|
|
}
|
|
|
|
|
|
// Calculate the surface area of the intersection
|
|
|
|
const intersection = this.calculateInstersection(feature, otherFeature, featureBBox)
|
|
if (intersection === null) {
|
|
continue;
|
|
}
|
|
result.push({feat: otherFeature, overlap: intersection})
|
|
|
|
}
|
|
return result;
|
|
}
|
|
console.error("Could not correctly calculate the overlap of ", feature, ": unsupported type")
|
|
return result;
|
|
}
|
|
|
|
public static inside(pointCoordinate, feature): boolean {
|
|
// ray-casting algorithm based on
|
|
// http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
|
|
|
|
if (feature.geometry.type === "Point") {
|
|
return false;
|
|
}
|
|
|
|
if (pointCoordinate.geometry !== undefined) {
|
|
pointCoordinate = pointCoordinate.geometry.coordinates
|
|
}
|
|
|
|
if (feature.geometry.type === "MultiPolygon") {
|
|
const coordinates = feature.geometry.coordinates[0];
|
|
const outerPolygon = coordinates[0];
|
|
const inside = GeoOperations.inside(pointCoordinate, {
|
|
geometry: {
|
|
type: 'Polygon',
|
|
coordinates: [outerPolygon]
|
|
}
|
|
})
|
|
if (!inside) {
|
|
return false;
|
|
}
|
|
for (let i = 1; i < coordinates.length; i++) {
|
|
const inHole = GeoOperations.inside(pointCoordinate, {
|
|
geometry: {
|
|
type: 'Polygon',
|
|
coordinates: [coordinates[i]]
|
|
}
|
|
})
|
|
if (inHole) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
const x: number = pointCoordinate[0];
|
|
const y: number = pointCoordinate[1];
|
|
|
|
for (let i = 0; i < feature.geometry.coordinates.length; i++) {
|
|
let poly = feature.geometry.coordinates[i];
|
|
|
|
let inside = false;
|
|
for (let i = 0, j = poly.length - 1; i < poly.length; j = i++) {
|
|
const coori = poly[i];
|
|
const coorj = poly[j];
|
|
|
|
const xi = coori[0];
|
|
const yi = coori[1];
|
|
const xj = coorj[0];
|
|
const yj = coorj[1];
|
|
|
|
const intersect = ((yi > y) != (yj > y))
|
|
&& (x < (xj - xi) * (y - yi) / (yj - yi) + xi);
|
|
if (intersect) {
|
|
inside = !inside;
|
|
}
|
|
}
|
|
if (inside) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
static lengthInMeters(feature: any) {
|
|
return turf.length(feature) * 1000
|
|
}
|
|
|
|
static buffer(feature: any, bufferSizeInMeter: number) {
|
|
return turf.buffer(feature, bufferSizeInMeter / 1000, {
|
|
units: 'kilometers'
|
|
})
|
|
}
|
|
|
|
static bbox(feature: any) {
|
|
const [lon, lat, lon0, lat0] = turf.bbox(feature)
|
|
return {
|
|
"type": "Feature",
|
|
"geometry": {
|
|
"type": "LineString",
|
|
"coordinates": [
|
|
[
|
|
lon,
|
|
lat
|
|
],
|
|
[
|
|
lon0,
|
|
lat
|
|
],
|
|
[
|
|
lon0,
|
|
lat0
|
|
],
|
|
[
|
|
lon,
|
|
lat0
|
|
],
|
|
[
|
|
lon,
|
|
lat
|
|
],
|
|
]
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Generates the closest point on a way from a given point
|
|
*
|
|
* The properties object will contain three values:
|
|
// - `index`: closest point was found on nth line part,
|
|
// - `dist`: distance between pt and the closest point (in kilometer),
|
|
// `location`: distance along the line between start and the closest point.
|
|
* @param way The road on which you want to find a point
|
|
* @param point Point defined as [lon, lat]
|
|
*/
|
|
public static nearestPoint(way, point: [number, number]) {
|
|
return turf.nearestPointOnLine(way, point, {units: "kilometers"});
|
|
}
|
|
|
|
public static toCSV(features: any[]): string {
|
|
|
|
const headerValuesSeen = new Set<string>();
|
|
const headerValuesOrdered: string[] = []
|
|
|
|
function addH(key) {
|
|
if (!headerValuesSeen.has(key)) {
|
|
headerValuesSeen.add(key)
|
|
headerValuesOrdered.push(key)
|
|
}
|
|
}
|
|
|
|
addH("_lat")
|
|
addH("_lon")
|
|
|
|
const lines: string[] = []
|
|
|
|
for (const feature of features) {
|
|
const properties = feature.properties;
|
|
for (const key in properties) {
|
|
if (!properties.hasOwnProperty(key)) {
|
|
continue;
|
|
}
|
|
addH(key)
|
|
|
|
}
|
|
}
|
|
headerValuesOrdered.sort()
|
|
for (const feature of features) {
|
|
const properties = feature.properties;
|
|
let line = ""
|
|
for (const key of headerValuesOrdered) {
|
|
const value = properties[key]
|
|
if (value === undefined) {
|
|
line += ","
|
|
} else {
|
|
line += JSON.stringify(value) + ","
|
|
}
|
|
}
|
|
lines.push(line)
|
|
}
|
|
|
|
return headerValuesOrdered.map(v => JSON.stringify(v)).join(",") + "\n" + lines.join("\n")
|
|
}
|
|
|
|
/**
|
|
* Calculates the intersection between two features.
|
|
* Returns the length if intersecting a linestring and a (multi)polygon (in meters), returns a surface area (in m²) if intersecting two (multi)polygons
|
|
* Returns 0 if both are linestrings
|
|
* Returns null if the features are not intersecting
|
|
*/
|
|
private static calculateInstersection(feature, otherFeature, featureBBox: BBox, otherFeatureBBox?: BBox): number {
|
|
try {
|
|
if (feature.geometry.type === "LineString") {
|
|
|
|
|
|
otherFeatureBBox = otherFeatureBBox ?? BBox.get(otherFeature);
|
|
const overlaps = featureBBox.overlapsWith(otherFeatureBBox)
|
|
if (!overlaps) {
|
|
return null;
|
|
}
|
|
|
|
// Calculate the length of the intersection
|
|
|
|
|
|
let intersectionPoints = turf.lineIntersect(feature, otherFeature);
|
|
if (intersectionPoints.features.length == 0) {
|
|
// No intersections.
|
|
// If one point is inside of the polygon, all points are
|
|
|
|
|
|
const coors = feature.geometry.coordinates;
|
|
const startCoor = coors[0]
|
|
if (this.inside(startCoor, otherFeature)) {
|
|
return this.lengthInMeters(feature)
|
|
}
|
|
|
|
return null;
|
|
}
|
|
let intersectionPointsArray = intersectionPoints.features.map(d => {
|
|
return d.geometry.coordinates
|
|
});
|
|
|
|
if (otherFeature.geometry.type === "LineString") {
|
|
if (intersectionPointsArray.length > 0) {
|
|
return 0
|
|
}
|
|
return null;
|
|
}
|
|
if (intersectionPointsArray.length == 1) {
|
|
// We need to add the start- or endpoint of the current feature, depending on which one is embedded
|
|
const coors = feature.geometry.coordinates;
|
|
const startCoor = coors[0]
|
|
if (this.inside(startCoor, otherFeature)) {
|
|
// The startpoint is embedded
|
|
intersectionPointsArray.push(startCoor)
|
|
} else {
|
|
intersectionPointsArray.push(coors[coors.length - 1])
|
|
}
|
|
}
|
|
|
|
let intersection = turf.lineSlice(turf.point(intersectionPointsArray[0]), turf.point(intersectionPointsArray[1]), feature);
|
|
|
|
if (intersection == null) {
|
|
return null;
|
|
}
|
|
const intersectionSize = turf.length(intersection); // in km
|
|
return intersectionSize * 1000
|
|
|
|
|
|
}
|
|
|
|
if (feature.geometry.type === "Polygon" || feature.geometry.type === "MultiPolygon") {
|
|
const otherFeatureBBox = BBox.get(otherFeature);
|
|
const overlaps = featureBBox.overlapsWith(otherFeatureBBox)
|
|
if (!overlaps) {
|
|
return null;
|
|
}
|
|
if (otherFeature.geometry.type === "LineString") {
|
|
return this.calculateInstersection(otherFeature, feature, otherFeatureBBox, featureBBox)
|
|
}
|
|
|
|
const intersection = turf.intersect(feature, otherFeature);
|
|
if (intersection == null) {
|
|
return null;
|
|
}
|
|
return turf.area(intersection); // in m²
|
|
|
|
}
|
|
|
|
} catch (exception) {
|
|
console.warn("EXCEPTION CAUGHT WHILE INTERSECTING: ", exception);
|
|
return undefined
|
|
}
|
|
return undefined;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
export class BBox {
|
|
|
|
readonly maxLat: number;
|
|
readonly maxLon: number;
|
|
readonly minLat: number;
|
|
readonly minLon: number;
|
|
static global: BBox = new BBox([[-180, -90], [180, 90]]);
|
|
|
|
constructor(coordinates) {
|
|
this.maxLat = Number.MIN_VALUE;
|
|
this.maxLon = Number.MIN_VALUE;
|
|
this.minLat = Number.MAX_VALUE;
|
|
this.minLon = Number.MAX_VALUE;
|
|
|
|
|
|
for (const coordinate of coordinates) {
|
|
this.maxLon = Math.max(this.maxLon, coordinate[0]);
|
|
this.maxLat = Math.max(this.maxLat, coordinate[1]);
|
|
this.minLon = Math.min(this.minLon, coordinate[0]);
|
|
this.minLat = Math.min(this.minLat, coordinate[1]);
|
|
}
|
|
this.check();
|
|
}
|
|
|
|
static fromLeafletBounds(bounds) {
|
|
return new BBox([[bounds.getWest(), bounds.getNorth()], [bounds.getEast(), bounds.getSouth()]])
|
|
}
|
|
|
|
static get(feature): BBox {
|
|
if (feature.bbox?.overlapsWith === undefined) {
|
|
const turfBbox: number[] = turf.bbox(feature)
|
|
feature.bbox = new BBox([[turfBbox[0], turfBbox[1]], [turfBbox[2], turfBbox[3]]]);
|
|
}
|
|
return feature.bbox;
|
|
}
|
|
|
|
public overlapsWith(other: BBox) {
|
|
if (this.maxLon < other.minLon) {
|
|
return false;
|
|
}
|
|
if (this.maxLat < other.minLat) {
|
|
return false;
|
|
}
|
|
if (this.minLon > other.maxLon) {
|
|
return false;
|
|
}
|
|
return this.minLat <= other.maxLat;
|
|
|
|
}
|
|
|
|
public isContainedIn(other: BBox) {
|
|
if (this.maxLon > other.maxLon) {
|
|
return false;
|
|
}
|
|
if (this.maxLat > other.maxLat) {
|
|
return false;
|
|
}
|
|
if (this.minLon < other.minLon) {
|
|
return false;
|
|
}
|
|
if (this.minLat < other.minLat) {
|
|
return false
|
|
}
|
|
return true;
|
|
}
|
|
|
|
private check() {
|
|
if (isNaN(this.maxLon) || isNaN(this.maxLat) || isNaN(this.minLon) || isNaN(this.minLat)) {
|
|
console.log(this);
|
|
throw "BBOX has NAN";
|
|
}
|
|
}
|
|
|
|
static fromTile(z: number, x: number, y: number) {
|
|
return new BBox(Utils.tile_bounds_lon_lat(z, x, y))
|
|
}
|
|
|
|
getEast() {
|
|
return this.maxLon
|
|
}
|
|
|
|
getNorth() {
|
|
return this.maxLat
|
|
}
|
|
|
|
getWest() {
|
|
return this.minLon
|
|
}
|
|
|
|
getSouth() {
|
|
return this.minLat
|
|
}
|
|
|
|
pad(factor: number) : BBox {
|
|
const latDiff = this.maxLat - this.minLat
|
|
const lat = (this.maxLat + this.minLat) / 2
|
|
const lonDiff = this.maxLon - this.minLon
|
|
const lon = (this.maxLon + this.minLon) / 2
|
|
return new BBox([[
|
|
lon - lonDiff * factor,
|
|
lat - latDiff * factor
|
|
], [lon + lonDiff * factor,
|
|
lat + latDiff * factor]])
|
|
}
|
|
|
|
toLeaflet() {
|
|
return [[this.minLat, this.minLon], [this.maxLat, this.maxLon]]
|
|
}
|
|
} |