forked from MapComplete/MapComplete
114 lines
No EOL
3.6 KiB
TypeScript
114 lines
No EOL
3.6 KiB
TypeScript
export interface TileRange {
|
|
xstart: number,
|
|
ystart: number,
|
|
xend: number,
|
|
yend: number,
|
|
total: number,
|
|
zoomlevel: number
|
|
}
|
|
|
|
export class Tiles {
|
|
|
|
public static MapRange<T>(tileRange: TileRange, f: (x: number, y: number) => T): T[] {
|
|
const result: T[] = []
|
|
const total = tileRange.total
|
|
if (total > 100000) {
|
|
throw `Tilerange too big (z is ${tileRange.zoomlevel}, total tiles needed: ${tileRange.total})`
|
|
}
|
|
for (let x = tileRange.xstart; x <= tileRange.xend; x++) {
|
|
for (let y = tileRange.ystart; y <= tileRange.yend; y++) {
|
|
const t = f(x, y);
|
|
result.push(t)
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Calculates the tile bounds of the
|
|
* @param z
|
|
* @param x
|
|
* @param y
|
|
* @returns [[maxlat, minlon], [minlat, maxlon]]
|
|
*/
|
|
static tile_bounds(z: number, x: number, y: number): [[number, number], [number, number]] {
|
|
return [[Tiles.tile2lat(y, z), Tiles.tile2long(x, z)], [Tiles.tile2lat(y + 1, z), Tiles.tile2long(x + 1, z)]]
|
|
}
|
|
|
|
static tile_bounds_lon_lat(z: number, x: number, y: number): [[number, number], [number, number]] {
|
|
return [[Tiles.tile2long(x, z), Tiles.tile2lat(y, z)], [Tiles.tile2long(x + 1, z), Tiles.tile2lat(y + 1, z)]]
|
|
}
|
|
|
|
/**
|
|
* Returns the centerpoint [lon, lat] of the specified tile
|
|
* @param z
|
|
* @param x
|
|
* @param y
|
|
*/
|
|
static centerPointOf(z: number, x: number, y: number): [number, number] {
|
|
return [(Tiles.tile2long(x, z) + Tiles.tile2long(x + 1, z)) / 2, (Tiles.tile2lat(y, z) + Tiles.tile2lat(y + 1, z)) / 2]
|
|
}
|
|
|
|
static tile_index(z: number, x: number, y: number): number {
|
|
return ((x * (2 << z)) + y) * 100 + z
|
|
}
|
|
|
|
/**
|
|
* Given a tile index number, returns [z, x, y]
|
|
* @param index
|
|
* @returns 'zxy'
|
|
*/
|
|
static tile_from_index(index: number): [number, number, number] {
|
|
const z = index % 100;
|
|
const factor = 2 << z
|
|
index = Math.floor(index / 100)
|
|
const x = Math.floor(index / factor)
|
|
return [z, x, index % factor]
|
|
}
|
|
|
|
/**
|
|
* Return x, y of the tile containing (lat, lon) on the given zoom level
|
|
*/
|
|
static embedded_tile(lat: number, lon: number, z: number): { x: number, y: number, z: number } {
|
|
return {x: Tiles.lon2tile(lon, z), y: Tiles.lat2tile(lat, z), z: z}
|
|
}
|
|
|
|
static TileRangeBetween(zoomlevel: number, lat0: number, lon0: number, lat1: number, lon1: number): TileRange {
|
|
const t0 = Tiles.embedded_tile(lat0, lon0, zoomlevel)
|
|
const t1 = Tiles.embedded_tile(lat1, lon1, zoomlevel)
|
|
|
|
const xstart = Math.min(t0.x, t1.x)
|
|
const xend = Math.max(t0.x, t1.x)
|
|
const ystart = Math.min(t0.y, t1.y)
|
|
const yend = Math.max(t0.y, t1.y)
|
|
const total = (1 + xend - xstart) * (1 + yend - ystart)
|
|
|
|
return {
|
|
xstart: xstart,
|
|
xend: xend,
|
|
ystart: ystart,
|
|
yend: yend,
|
|
total: total,
|
|
zoomlevel: zoomlevel
|
|
}
|
|
}
|
|
|
|
private static tile2long(x, z) {
|
|
return (x / Math.pow(2, z) * 360 - 180);
|
|
}
|
|
|
|
private static tile2lat(y, z) {
|
|
const n = Math.PI - 2 * Math.PI * y / Math.pow(2, z);
|
|
return (180 / Math.PI * Math.atan(0.5 * (Math.exp(n) - Math.exp(-n))));
|
|
}
|
|
|
|
private static lon2tile(lon, zoom) {
|
|
return (Math.floor((lon + 180) / 360 * Math.pow(2, zoom)));
|
|
}
|
|
|
|
private static lat2tile(lat, zoom) {
|
|
return (Math.floor((1 - Math.log(Math.tan(lat * Math.PI / 180) + 1 / Math.cos(lat * Math.PI / 180)) / Math.PI) / 2 * Math.pow(2, zoom)));
|
|
}
|
|
|
|
|
|
} |