forked from MapComplete/MapComplete
		
	
		
			
				
	
	
		
			975 lines
		
	
	
	
		
			37 KiB
		
	
	
	
		
			TypeScript
		
	
	
	
	
	
			
		
		
	
	
			975 lines
		
	
	
	
		
			37 KiB
		
	
	
	
		
			TypeScript
		
	
	
	
	
	
import { BBox } from "./BBox"
 | 
						|
import LayerConfig from "../Models/ThemeConfig/LayerConfig"
 | 
						|
import * as turf from "@turf/turf"
 | 
						|
import { AllGeoJSON, booleanWithin, Coord, Lines } from "@turf/turf"
 | 
						|
import {
 | 
						|
    Feature,
 | 
						|
    FeatureCollection,
 | 
						|
    GeoJSON,
 | 
						|
    Geometry,
 | 
						|
    LineString,
 | 
						|
    MultiLineString,
 | 
						|
    MultiPolygon,
 | 
						|
    Point,
 | 
						|
    Polygon,
 | 
						|
    Position,
 | 
						|
} from "geojson"
 | 
						|
import togpx from "togpx"
 | 
						|
import Constants from "../Models/Constants"
 | 
						|
import { Tiles } from "../Models/TileRange"
 | 
						|
 | 
						|
export class GeoOperations {
 | 
						|
    private static readonly _earthRadius = 6378137
 | 
						|
    private static readonly _originShift = (2 * Math.PI * GeoOperations._earthRadius) / 2
 | 
						|
 | 
						|
    /**
 | 
						|
     * Create a union between two features
 | 
						|
     */
 | 
						|
    public static union(f0: Feature, f1: Feature): Feature<Polygon | MultiPolygon> | null {
 | 
						|
        return turf.union(<any>f0, <any>f1)
 | 
						|
    }
 | 
						|
 | 
						|
    public static intersect(f0: Feature, f1: Feature): Feature<Polygon | MultiPolygon> | null {
 | 
						|
        return turf.intersect(<any>f0, <any>f1)
 | 
						|
    }
 | 
						|
 | 
						|
    static surfaceAreaInSqMeters(feature: any) {
 | 
						|
        return turf.area(feature)
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Converts a GeoJson feature to a point GeoJson feature
 | 
						|
     * @param feature
 | 
						|
     */
 | 
						|
    static centerpoint(feature: any): Feature<Point> {
 | 
						|
        const newFeature: Feature<Point> = turf.center(feature)
 | 
						|
        newFeature.properties = feature.properties
 | 
						|
        newFeature.id = feature.id
 | 
						|
        return newFeature
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Returns [lon,lat] coordinates
 | 
						|
     * @param feature
 | 
						|
     */
 | 
						|
    static centerpointCoordinates(feature: AllGeoJSON | GeoJSON): [number, number] {
 | 
						|
        return <[number, number]>turf.center(<any>feature).geometry.coordinates
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Returns the distance between the two points in meters
 | 
						|
     * @param lonlat0
 | 
						|
     * @param lonlat1
 | 
						|
     */
 | 
						|
    static distanceBetween(lonlat0: [number, number], lonlat1: [number, number] | Position) {
 | 
						|
        return turf.distance(lonlat0, lonlat1, { units: "meters" })
 | 
						|
    }
 | 
						|
 | 
						|
    static convexHull(featureCollection, options: { concavity?: number }) {
 | 
						|
        return turf.convex(featureCollection, options)
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Calculates the overlap of 'feature' with every other specified feature.
 | 
						|
     * The features with which 'feature' overlaps, are returned together with their overlap area in m²
 | 
						|
     *
 | 
						|
     * If 'feature' is a LineString, the features in which this feature is (partly) embedded is returned, the overlap length in meter is given
 | 
						|
     * If 'feature' is a Polygon, overlapping points and points within the polygon will be returned
 | 
						|
     *
 | 
						|
     * If 'feature' is a point, it will return every feature the point is embedded in. Overlap will be undefined
 | 
						|
     *
 | 
						|
     * const polygon = {"type": "Feature","properties": {},"geometry": {"type": "Polygon","coordinates": [[[1.8017578124999998,50.401515322782366],[-3.1640625,46.255846818480315],[5.185546875,44.74673324024678],[1.8017578124999998,50.401515322782366]]]}};
 | 
						|
     * const point = {"type": "Feature", "properties": {}, "geometry": { "type": "Point", "coordinates": [2.274169921875, 46.76244305208004]}};
 | 
						|
     * const overlap = GeoOperations.calculateOverlap(point, [polygon]);
 | 
						|
     * overlap.length // => 1
 | 
						|
     * overlap[0].feat == polygon // => true
 | 
						|
     * const line = {"type": "Feature","properties": {},"geometry": {"type": "LineString","coordinates": [[3.779296875,48.777912755501845],[1.23046875,47.60616304386874]]}};
 | 
						|
     * const lineOverlap = GeoOperations.calculateOverlap(line, [polygon]);
 | 
						|
     * lineOverlap.length // => 1
 | 
						|
     * lineOverlap[0].overlap // => 156745.3293320278
 | 
						|
     * lineOverlap[0].feat == polygon // => true
 | 
						|
     * const line0 = {"type": "Feature","properties": {},"geometry": {"type": "LineString","coordinates": [[0.0439453125,47.31648293428332],[0.6591796875,46.77749276376827]]}};
 | 
						|
     * const overlap0 = GeoOperations.calculateOverlap(line0, [polygon]);
 | 
						|
     * overlap.length // => 1
 | 
						|
     */
 | 
						|
    static calculateOverlap(feature: any, otherFeatures: any[]): { feat: any; overlap: number }[] {
 | 
						|
        const featureBBox = BBox.get(feature)
 | 
						|
        const result: { feat: any; overlap: number }[] = []
 | 
						|
        if (feature.geometry.type === "Point") {
 | 
						|
            const coor = feature.geometry.coordinates
 | 
						|
            for (const otherFeature of otherFeatures) {
 | 
						|
                if (
 | 
						|
                    feature.properties.id !== undefined &&
 | 
						|
                    feature.properties.id === otherFeature.properties.id
 | 
						|
                ) {
 | 
						|
                    continue
 | 
						|
                }
 | 
						|
 | 
						|
                if (otherFeature.geometry === undefined) {
 | 
						|
                    console.error("No geometry for feature ", feature)
 | 
						|
                    throw "List of other features contains a feature without geometry an undefined"
 | 
						|
                }
 | 
						|
 | 
						|
                if (GeoOperations.inside(coor, otherFeature)) {
 | 
						|
                    result.push({ feat: otherFeature, overlap: undefined })
 | 
						|
                }
 | 
						|
            }
 | 
						|
            return result
 | 
						|
        }
 | 
						|
 | 
						|
        if (feature.geometry.type === "LineString") {
 | 
						|
            for (const otherFeature of otherFeatures) {
 | 
						|
                if (
 | 
						|
                    feature.properties.id !== undefined &&
 | 
						|
                    feature.properties.id === otherFeature.properties.id
 | 
						|
                ) {
 | 
						|
                    continue
 | 
						|
                }
 | 
						|
 | 
						|
                const intersection = GeoOperations.calculateInstersection(
 | 
						|
                    feature,
 | 
						|
                    otherFeature,
 | 
						|
                    featureBBox
 | 
						|
                )
 | 
						|
                if (intersection === null) {
 | 
						|
                    continue
 | 
						|
                }
 | 
						|
                result.push({ feat: otherFeature, overlap: intersection })
 | 
						|
            }
 | 
						|
            return result
 | 
						|
        }
 | 
						|
 | 
						|
        if (feature.geometry.type === "Polygon" || feature.geometry.type === "MultiPolygon") {
 | 
						|
            for (const otherFeature of otherFeatures) {
 | 
						|
                if (
 | 
						|
                    feature.properties.id !== undefined &&
 | 
						|
                    feature.properties.id === otherFeature.properties.id
 | 
						|
                ) {
 | 
						|
                    continue
 | 
						|
                }
 | 
						|
 | 
						|
                if (otherFeature.geometry.type === "Point") {
 | 
						|
                    if (this.inside(otherFeature, feature)) {
 | 
						|
                        result.push({ feat: otherFeature, overlap: undefined })
 | 
						|
                    }
 | 
						|
                    continue
 | 
						|
                }
 | 
						|
 | 
						|
                // Calculate the surface area of the intersection
 | 
						|
 | 
						|
                const intersection = this.calculateInstersection(feature, otherFeature, featureBBox)
 | 
						|
                if (intersection === null) {
 | 
						|
                    continue
 | 
						|
                }
 | 
						|
                result.push({ feat: otherFeature, overlap: intersection })
 | 
						|
            }
 | 
						|
            return result
 | 
						|
        }
 | 
						|
        console.error(
 | 
						|
            "Could not correctly calculate the overlap of ",
 | 
						|
            feature,
 | 
						|
            ": unsupported type"
 | 
						|
        )
 | 
						|
        return result
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Detect wether or not the given point is located in the feature
 | 
						|
     *
 | 
						|
     * // Should work with a normal polygon
 | 
						|
     * const polygon = {"type": "Feature","properties": {},"geometry": {"type": "Polygon","coordinates": [[[1.8017578124999998,50.401515322782366],[-3.1640625,46.255846818480315],[5.185546875,44.74673324024678],[1.8017578124999998,50.401515322782366]]]}};
 | 
						|
     * GeoOperations.inside([3.779296875, 48.777912755501845], polygon) // => false
 | 
						|
     * GeoOperations.inside([1.23046875, 47.60616304386874], polygon) // => true
 | 
						|
     *
 | 
						|
     * // should work with a multipolygon and detect holes
 | 
						|
     * const multiPolygon = {"type": "Feature", "properties": {},
 | 
						|
     *         "geometry": {
 | 
						|
     *             "type": "MultiPolygon",
 | 
						|
     *             "coordinates": [[
 | 
						|
     *                 [[1.8017578124999998,50.401515322782366],[-3.1640625,46.255846818480315],[5.185546875,44.74673324024678],[1.8017578124999998,50.401515322782366]],
 | 
						|
     *                 [[1.0107421875,48.821332549646634],[1.329345703125,48.25394114463431],[1.988525390625,48.71271258145237],[0.999755859375,48.86471476180277],[1.0107421875,48.821332549646634]]
 | 
						|
     *             ]]
 | 
						|
     *         }
 | 
						|
     *     };
 | 
						|
     * GeoOperations.inside([2.515869140625, 47.37603463349758], multiPolygon) // => true
 | 
						|
     * GeoOperations.inside([1.42822265625, 48.61838518688487], multiPolygon) // => false
 | 
						|
     * GeoOperations.inside([4.02099609375, 47.81315451752768], multiPolygon) // => false
 | 
						|
     */
 | 
						|
    public static inside(
 | 
						|
        pointCoordinate: [number, number] | Feature<Point>,
 | 
						|
        feature: Feature
 | 
						|
    ): boolean {
 | 
						|
        // ray-casting algorithm based on
 | 
						|
        // http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
 | 
						|
 | 
						|
        if (feature.geometry.type === "Point") {
 | 
						|
            // The feature that should 'contain' pointCoordinate is a point itself, so it cannot contain anything
 | 
						|
            return false
 | 
						|
        }
 | 
						|
 | 
						|
        if (pointCoordinate["geometry"] !== undefined) {
 | 
						|
            pointCoordinate = pointCoordinate["geometry"].coordinates
 | 
						|
        }
 | 
						|
 | 
						|
        const x: number = pointCoordinate[0]
 | 
						|
        const y: number = pointCoordinate[1]
 | 
						|
 | 
						|
        if (feature.geometry.type === "MultiPolygon") {
 | 
						|
            const coordinatess = feature.geometry.coordinates
 | 
						|
            for (const coordinates of coordinatess) {
 | 
						|
                // @ts-ignore
 | 
						|
                const inThisPolygon = GeoOperations.pointInPolygonCoordinates(x, y, coordinates)
 | 
						|
                if (inThisPolygon) {
 | 
						|
                    return true
 | 
						|
                }
 | 
						|
            }
 | 
						|
            return false
 | 
						|
        }
 | 
						|
 | 
						|
        if (feature.geometry.type === "Polygon") {
 | 
						|
            // @ts-ignore
 | 
						|
            return GeoOperations.pointInPolygonCoordinates(x, y, feature.geometry.coordinates)
 | 
						|
        }
 | 
						|
 | 
						|
        throw "GeoOperations.inside: unsupported geometry type " + feature.geometry.type
 | 
						|
    }
 | 
						|
 | 
						|
    static lengthInMeters(feature: any) {
 | 
						|
        return turf.length(feature) * 1000
 | 
						|
    }
 | 
						|
 | 
						|
    static buffer(feature: any, bufferSizeInMeter: number) {
 | 
						|
        return turf.buffer(feature, bufferSizeInMeter / 1000, {
 | 
						|
            units: "kilometers",
 | 
						|
        })
 | 
						|
    }
 | 
						|
 | 
						|
    static bbox(feature: Feature | FeatureCollection): Feature<LineString, {}> {
 | 
						|
        const [lon, lat, lon0, lat0] = turf.bbox(feature)
 | 
						|
        return {
 | 
						|
            type: "Feature",
 | 
						|
            properties: {},
 | 
						|
            geometry: {
 | 
						|
                type: "LineString",
 | 
						|
                coordinates: [
 | 
						|
                    [lon, lat],
 | 
						|
                    [lon0, lat],
 | 
						|
                    [lon0, lat0],
 | 
						|
                    [lon, lat0],
 | 
						|
                    [lon, lat],
 | 
						|
                ],
 | 
						|
            },
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Generates the closest point on a way from a given point.
 | 
						|
     * If the passed-in geojson object is a polygon, the outer ring will be used as linestring
 | 
						|
     *
 | 
						|
     *  The properties object will contain three values:
 | 
						|
     // - `index`: closest point was found on nth line part,
 | 
						|
     // - `dist`: distance between pt and the closest point (in kilometer),
 | 
						|
     // `location`: distance along the line between start (of the line) and the closest point.
 | 
						|
     * @param way The road on which you want to find a point
 | 
						|
     * @param point Point defined as [lon, lat]
 | 
						|
     */
 | 
						|
    public static nearestPoint(
 | 
						|
        way: Feature<LineString>,
 | 
						|
        point: [number, number]
 | 
						|
    ): Feature<
 | 
						|
        Point,
 | 
						|
        {
 | 
						|
            index: number
 | 
						|
            dist: number
 | 
						|
            location: number
 | 
						|
        }
 | 
						|
    > {
 | 
						|
        return <any>(
 | 
						|
            turf.nearestPointOnLine(<Feature<LineString>>way, point, { units: "kilometers" })
 | 
						|
        )
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Helper method to reuse the coordinates of the way as LineString.
 | 
						|
     * Mostly used as helper for 'nearestPoint'
 | 
						|
     * @param way
 | 
						|
     */
 | 
						|
    public static forceLineString(
 | 
						|
        way: Feature<LineString | MultiLineString | Polygon | MultiPolygon>
 | 
						|
    ): Feature<LineString | MultiLineString> {
 | 
						|
        if (way.geometry.type === "Polygon") {
 | 
						|
            way = { ...way }
 | 
						|
            way.geometry = { ...way.geometry }
 | 
						|
            way.geometry.type = "LineString"
 | 
						|
            way.geometry.coordinates = (<Polygon>way.geometry).coordinates[0]
 | 
						|
        } else if (way.geometry.type === "MultiPolygon") {
 | 
						|
            way = { ...way }
 | 
						|
            way.geometry = { ...way.geometry }
 | 
						|
            way.geometry.type = "MultiLineString"
 | 
						|
            way.geometry.coordinates = (<MultiPolygon>way.geometry).coordinates[0]
 | 
						|
        }
 | 
						|
 | 
						|
        return <any>way
 | 
						|
    }
 | 
						|
 | 
						|
    public static toCSV(features: any[]): string {
 | 
						|
        const headerValuesSeen = new Set<string>()
 | 
						|
        const headerValuesOrdered: string[] = []
 | 
						|
 | 
						|
        function addH(key) {
 | 
						|
            if (!headerValuesSeen.has(key)) {
 | 
						|
                headerValuesSeen.add(key)
 | 
						|
                headerValuesOrdered.push(key)
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        addH("_lat")
 | 
						|
        addH("_lon")
 | 
						|
 | 
						|
        const lines: string[] = []
 | 
						|
 | 
						|
        for (const feature of features) {
 | 
						|
            const properties = feature.properties
 | 
						|
            for (const key in properties) {
 | 
						|
                if (!properties.hasOwnProperty(key)) {
 | 
						|
                    continue
 | 
						|
                }
 | 
						|
                addH(key)
 | 
						|
            }
 | 
						|
        }
 | 
						|
        headerValuesOrdered.sort()
 | 
						|
        for (const feature of features) {
 | 
						|
            const properties = feature.properties
 | 
						|
            let line = ""
 | 
						|
            for (const key of headerValuesOrdered) {
 | 
						|
                const value = properties[key]
 | 
						|
                if (value === undefined) {
 | 
						|
                    line += ","
 | 
						|
                } else {
 | 
						|
                    line += JSON.stringify(value) + ","
 | 
						|
                }
 | 
						|
            }
 | 
						|
            lines.push(line)
 | 
						|
        }
 | 
						|
 | 
						|
        return headerValuesOrdered.map((v) => JSON.stringify(v)).join(",") + "\n" + lines.join("\n")
 | 
						|
    }
 | 
						|
 | 
						|
    //Converts given lat/lon in WGS84 Datum to XY in Spherical Mercator EPSG:900913
 | 
						|
    public static ConvertWgs84To900913(lonLat: [number, number]): [number, number] {
 | 
						|
        const lon = lonLat[0]
 | 
						|
        const lat = lonLat[1]
 | 
						|
        const x = (lon * GeoOperations._originShift) / 180
 | 
						|
        let y = Math.log(Math.tan(((90 + lat) * Math.PI) / 360)) / (Math.PI / 180)
 | 
						|
        y = (y * GeoOperations._originShift) / 180
 | 
						|
        return [x, y]
 | 
						|
    }
 | 
						|
 | 
						|
    //Converts XY point from (Spherical) Web Mercator EPSG:3785 (unofficially EPSG:900913) to lat/lon in WGS84 Datum
 | 
						|
    public static Convert900913ToWgs84(lonLat: [number, number]): [number, number] {
 | 
						|
        const lon = lonLat[0]
 | 
						|
        const lat = lonLat[1]
 | 
						|
        const x = (180 * lon) / GeoOperations._originShift
 | 
						|
        let y = (180 * lat) / GeoOperations._originShift
 | 
						|
        y = (180 / Math.PI) * (2 * Math.atan(Math.exp((y * Math.PI) / 180)) - Math.PI / 2)
 | 
						|
        return [x, y]
 | 
						|
    }
 | 
						|
 | 
						|
    public static GeoJsonToWGS84(geojson) {
 | 
						|
        return turf.toWgs84(geojson)
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Tries to remove points which do not contribute much to the general outline.
 | 
						|
     * Points for which the angle is ~ 180° are removed
 | 
						|
     * @param coordinates
 | 
						|
     * @constructor
 | 
						|
     */
 | 
						|
    public static SimplifyCoordinates(coordinates: [number, number][]) {
 | 
						|
        const newCoordinates = []
 | 
						|
        for (let i = 1; i < coordinates.length - 1; i++) {
 | 
						|
            const coordinate = coordinates[i]
 | 
						|
            const prev = coordinates[i - 1]
 | 
						|
            const next = coordinates[i + 1]
 | 
						|
            const b0 = turf.bearing(prev, coordinate, { final: true })
 | 
						|
            const b1 = turf.bearing(coordinate, next)
 | 
						|
 | 
						|
            const diff = Math.abs(b1 - b0)
 | 
						|
            if (diff < 2) {
 | 
						|
                continue
 | 
						|
            }
 | 
						|
            newCoordinates.push(coordinate)
 | 
						|
        }
 | 
						|
        return newCoordinates
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Calculates line intersection between two features.
 | 
						|
     */
 | 
						|
    public static LineIntersections(feature, otherFeature): [number, number][] {
 | 
						|
        return turf
 | 
						|
            .lineIntersect(feature, otherFeature)
 | 
						|
            .features.map((p) => <[number, number]>p.geometry.coordinates)
 | 
						|
    }
 | 
						|
 | 
						|
    public static AsGpx(
 | 
						|
        feature: Feature,
 | 
						|
        options?: { layer?: LayerConfig; gpxMetadata?: any }
 | 
						|
    ): string {
 | 
						|
        const metadata = options?.gpxMetadata ?? {}
 | 
						|
        metadata["time"] = metadata["time"] ?? new Date().toISOString()
 | 
						|
        const tags = feature.properties
 | 
						|
 | 
						|
        if (options?.layer !== undefined) {
 | 
						|
            metadata["name"] = options?.layer.title?.GetRenderValue(tags)?.Subs(tags)?.txt
 | 
						|
            metadata["desc"] = "Generated with MapComplete layer " + options?.layer.id
 | 
						|
            if (tags._backend?.contains("openstreetmap")) {
 | 
						|
                metadata["copyright"] =
 | 
						|
                    "Data copyrighted by OpenStreetMap-contributors, freely available under ODbL. See https://www.openstreetmap.org/copyright"
 | 
						|
                metadata["author"] = tags["_last_edit:contributor"]
 | 
						|
                metadata["link"] = "https://www.openstreetmap.org/" + tags.id
 | 
						|
                metadata["time"] = tags["_last_edit:timestamp"]
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        return togpx(feature, {
 | 
						|
            creator: "MapComplete " + Constants.vNumber,
 | 
						|
            metadata,
 | 
						|
        })
 | 
						|
    }
 | 
						|
 | 
						|
    public static IdentifieCommonSegments(coordinatess: [number, number][][]): {
 | 
						|
        originalIndex: number
 | 
						|
        segmentShardWith: number[]
 | 
						|
        coordinates: []
 | 
						|
    }[] {
 | 
						|
        // An edge. Note that the edge might be reversed to fix the sorting condition:  start[0] < end[0] && (start[0] != end[0] || start[0] < end[1])
 | 
						|
        type edge = {
 | 
						|
            start: [number, number]
 | 
						|
            end: [number, number]
 | 
						|
            intermediate: [number, number][]
 | 
						|
            members: { index: number; isReversed: boolean }[]
 | 
						|
        }
 | 
						|
 | 
						|
        // The strategy:
 | 
						|
        // 1. Index _all_ edges from _every_ linestring. Index them by starting key, gather which relations run over them
 | 
						|
        // 2. Join these edges back together - as long as their membership groups are the same
 | 
						|
        // 3. Convert to results
 | 
						|
 | 
						|
        const allEdgesByKey = new Map<string, edge>()
 | 
						|
 | 
						|
        for (let index = 0; index < coordinatess.length; index++) {
 | 
						|
            const coordinates = coordinatess[index]
 | 
						|
            for (let i = 0; i < coordinates.length - 1; i++) {
 | 
						|
                const c0 = coordinates[i]
 | 
						|
                const c1 = coordinates[i + 1]
 | 
						|
                const isReversed = c0[0] > c1[0] || (c0[0] == c1[0] && c0[1] > c1[1])
 | 
						|
 | 
						|
                let key: string
 | 
						|
                if (isReversed) {
 | 
						|
                    key = "" + c1 + ";" + c0
 | 
						|
                } else {
 | 
						|
                    key = "" + c0 + ";" + c1
 | 
						|
                }
 | 
						|
                const member = { index, isReversed }
 | 
						|
                if (allEdgesByKey.has(key)) {
 | 
						|
                    allEdgesByKey.get(key).members.push(member)
 | 
						|
                    continue
 | 
						|
                }
 | 
						|
 | 
						|
                let edge: edge
 | 
						|
                if (!isReversed) {
 | 
						|
                    edge = {
 | 
						|
                        start: c0,
 | 
						|
                        end: c1,
 | 
						|
                        members: [member],
 | 
						|
                        intermediate: [],
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
                    edge = {
 | 
						|
                        start: c1,
 | 
						|
                        end: c0,
 | 
						|
                        members: [member],
 | 
						|
                        intermediate: [],
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                allEdgesByKey.set(key, edge)
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // Lets merge them back together!
 | 
						|
 | 
						|
        let didMergeSomething = false
 | 
						|
        let allMergedEdges = Array.from(allEdgesByKey.values())
 | 
						|
        const allEdgesByStartPoint = new Map<string, edge[]>()
 | 
						|
        for (const edge of allMergedEdges) {
 | 
						|
            edge.members.sort((m0, m1) => m0.index - m1.index)
 | 
						|
 | 
						|
            const kstart = edge.start + ""
 | 
						|
            if (!allEdgesByStartPoint.has(kstart)) {
 | 
						|
                allEdgesByStartPoint.set(kstart, [])
 | 
						|
            }
 | 
						|
            allEdgesByStartPoint.get(kstart).push(edge)
 | 
						|
        }
 | 
						|
 | 
						|
        function membersAreCompatible(first: edge, second: edge): boolean {
 | 
						|
            // There must be an exact match between the members
 | 
						|
            if (first.members === second.members) {
 | 
						|
                return true
 | 
						|
            }
 | 
						|
 | 
						|
            if (first.members.length !== second.members.length) {
 | 
						|
                return false
 | 
						|
            }
 | 
						|
 | 
						|
            // Members are sorted and have the same length, so we can check quickly
 | 
						|
            for (let i = 0; i < first.members.length; i++) {
 | 
						|
                const m0 = first.members[i]
 | 
						|
                const m1 = second.members[i]
 | 
						|
                if (m0.index !== m1.index || m0.isReversed !== m1.isReversed) {
 | 
						|
                    return false
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            // Allrigth, they are the same, lets mark this permanently
 | 
						|
            second.members = first.members
 | 
						|
            return true
 | 
						|
        }
 | 
						|
 | 
						|
        do {
 | 
						|
            didMergeSomething = false
 | 
						|
            // We use 'allMergedEdges' as our running list
 | 
						|
            const consumed = new Set<edge>()
 | 
						|
            for (const edge of allMergedEdges) {
 | 
						|
                // Can we make this edge longer at the end?
 | 
						|
                if (consumed.has(edge)) {
 | 
						|
                    continue
 | 
						|
                }
 | 
						|
 | 
						|
                console.log("Considering edge", edge)
 | 
						|
                const matchingEndEdges = allEdgesByStartPoint.get(edge.end + "")
 | 
						|
                console.log("Matchign endpoints:", matchingEndEdges)
 | 
						|
                if (matchingEndEdges === undefined) {
 | 
						|
                    continue
 | 
						|
                }
 | 
						|
 | 
						|
                for (let i = 0; i < matchingEndEdges.length; i++) {
 | 
						|
                    const endEdge = matchingEndEdges[i]
 | 
						|
 | 
						|
                    if (consumed.has(endEdge)) {
 | 
						|
                        continue
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (!membersAreCompatible(edge, endEdge)) {
 | 
						|
                        continue
 | 
						|
                    }
 | 
						|
 | 
						|
                    // We can make the segment longer!
 | 
						|
                    didMergeSomething = true
 | 
						|
                    console.log("Merging ", edge, "with ", endEdge)
 | 
						|
                    edge.intermediate.push(edge.end)
 | 
						|
                    edge.end = endEdge.end
 | 
						|
                    consumed.add(endEdge)
 | 
						|
                    matchingEndEdges.splice(i, 1)
 | 
						|
                    break
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            allMergedEdges = allMergedEdges.filter((edge) => !consumed.has(edge))
 | 
						|
        } while (didMergeSomething)
 | 
						|
 | 
						|
        return []
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Removes points that do not contribute to the geometry from linestrings and the outer ring of polygons.
 | 
						|
     * Returs a new copy of the feature
 | 
						|
     *
 | 
						|
     * const feature = {"geometry": {"type": "Polygon","coordinates": [[[4.477944199999975,51.02783550000022],[4.477987899999996,51.027818800000034],[4.478004500000021,51.02783399999988],[4.478025499999962,51.02782489999994],[4.478079099999993,51.027873899999896],[4.47801040000006,51.027903799999955],[4.477964799999972,51.02785709999982],[4.477964699999964,51.02785690000006],[4.477944199999975,51.02783550000022]]]}}
 | 
						|
     * const copy = GeoOperations.removeOvernoding(feature)
 | 
						|
     * expect(copy.geometry.coordinates[0]).deep.equal([[4.477944199999975,51.02783550000022],[4.477987899999996,51.027818800000034],[4.478004500000021,51.02783399999988],[4.478025499999962,51.02782489999994],[4.478079099999993,51.027873899999896],[4.47801040000006,51.027903799999955],[4.477944199999975,51.02783550000022]])
 | 
						|
     */
 | 
						|
    static removeOvernoding(feature: any) {
 | 
						|
        if (feature.geometry.type !== "LineString" && feature.geometry.type !== "Polygon") {
 | 
						|
            throw "Overnode removal is only supported on linestrings and polygons"
 | 
						|
        }
 | 
						|
 | 
						|
        const copy = {
 | 
						|
            ...feature,
 | 
						|
            geometry: { ...feature.geometry },
 | 
						|
        }
 | 
						|
        let coordinates: [number, number][]
 | 
						|
        if (feature.geometry.type === "LineString") {
 | 
						|
            coordinates = [...feature.geometry.coordinates]
 | 
						|
            copy.geometry.coordinates = coordinates
 | 
						|
        } else {
 | 
						|
            coordinates = [...feature.geometry.coordinates[0]]
 | 
						|
            copy.geometry.coordinates[0] = coordinates
 | 
						|
        }
 | 
						|
 | 
						|
        // inline replacement in the coordinates list
 | 
						|
        for (let i = coordinates.length - 2; i >= 1; i--) {
 | 
						|
            const coordinate = coordinates[i]
 | 
						|
            const nextCoordinate = coordinates[i + 1]
 | 
						|
            const prevCoordinate = coordinates[i - 1]
 | 
						|
 | 
						|
            const distP = GeoOperations.distanceBetween(coordinate, prevCoordinate)
 | 
						|
            if (distP < 0.1) {
 | 
						|
                coordinates.splice(i, 1)
 | 
						|
                continue
 | 
						|
            }
 | 
						|
 | 
						|
            if (i == coordinates.length - 2) {
 | 
						|
                const distN = GeoOperations.distanceBetween(coordinate, nextCoordinate)
 | 
						|
                if (distN < 0.1) {
 | 
						|
                    coordinates.splice(i, 1)
 | 
						|
                    continue
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            const bearingN = turf.bearing(coordinate, nextCoordinate)
 | 
						|
            const bearingP = turf.bearing(prevCoordinate, coordinate)
 | 
						|
            const diff = Math.abs(bearingN - bearingP)
 | 
						|
            if (diff < 4) {
 | 
						|
                // If the diff is low, this point is hardly relevant
 | 
						|
                coordinates.splice(i, 1)
 | 
						|
            } else if (360 - diff < 4) {
 | 
						|
                // In case that the line is going south, e.g. bearingN = 179, bearingP = -179
 | 
						|
                coordinates.splice(i, 1)
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return copy
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Takes two points and finds the geographic bearing between them, i.e. the angle measured in degrees from the north line (0 degrees)
 | 
						|
     */
 | 
						|
    public static bearing(a: Coord, b: Coord): number {
 | 
						|
        return turf.bearing(a, b)
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Returns 'true' if one feature contains the other feature
 | 
						|
     *
 | 
						|
     * const pond: Feature<Polygon, any> = {
 | 
						|
     *       "type": "Feature",
 | 
						|
     *       "properties": {"natural":"water","water":"pond"},
 | 
						|
     *       "geometry": {
 | 
						|
     *         "type": "Polygon",
 | 
						|
     *         "coordinates": [[
 | 
						|
     *             [4.362924098968506,50.8435422298544 ],
 | 
						|
     *             [4.363272786140442,50.8435219059949 ],
 | 
						|
     *             [4.363213777542114,50.8437420806679 ],
 | 
						|
     *             [4.362924098968506,50.8435422298544 ]
 | 
						|
     *           ]]}}
 | 
						|
     * const park: Feature<Polygon, any> =   {
 | 
						|
     *       "type": "Feature",
 | 
						|
     *       "properties": {"leisure":"park"},
 | 
						|
     *       "geometry": {
 | 
						|
     *         "type": "Polygon",
 | 
						|
     *         "coordinates": [[
 | 
						|
     *            [ 4.36073541641235,50.84323737103244 ],
 | 
						|
     *            [ 4.36469435691833, 50.8423905305197 ],
 | 
						|
     *            [ 4.36659336090087, 50.8458997374786 ],
 | 
						|
     *            [ 4.36254858970642, 50.8468007074916 ],
 | 
						|
     *            [ 4.36073541641235, 50.8432373710324 ]
 | 
						|
     *           ]]}}
 | 
						|
     * GeoOperations.completelyWithin(pond, park) // => true
 | 
						|
     * GeoOperations.completelyWithin(park, pond) // => false
 | 
						|
     */
 | 
						|
    static completelyWithin(
 | 
						|
        feature: Feature<Geometry, any>,
 | 
						|
        possiblyEnclosingFeature: Feature<Polygon | MultiPolygon, any>
 | 
						|
    ): boolean {
 | 
						|
        return booleanWithin(feature, possiblyEnclosingFeature)
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Create an intersection between two features.
 | 
						|
     * One or multiple new feature is returned based on 'toSplit', which'll have a geometry that is completely withing boundary
 | 
						|
     */
 | 
						|
    public static clipWith(toSplit: Feature, boundary: Feature<Polygon>): Feature[] {
 | 
						|
        if (toSplit.geometry.type === "Point") {
 | 
						|
            const p = <Feature<Point>>toSplit
 | 
						|
            if (GeoOperations.inside(<[number, number]>p.geometry.coordinates, boundary)) {
 | 
						|
                return [p]
 | 
						|
            } else {
 | 
						|
                return []
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (toSplit.geometry.type === "LineString") {
 | 
						|
            const splitup = turf.lineSplit(<Feature<LineString>>toSplit, boundary)
 | 
						|
            const kept = []
 | 
						|
            for (const f of splitup.features) {
 | 
						|
                const ls = <Feature<LineString>>f
 | 
						|
                if (!GeoOperations.inside(GeoOperations.centerpointCoordinates(f), boundary)) {
 | 
						|
                    continue
 | 
						|
                }
 | 
						|
                f.properties = { ...toSplit.properties }
 | 
						|
                kept.push(f)
 | 
						|
            }
 | 
						|
            return kept
 | 
						|
        }
 | 
						|
        if (toSplit.geometry.type === "Polygon" || toSplit.geometry.type == "MultiPolygon") {
 | 
						|
            const splitup = turf.intersect(<Feature<Polygon>>toSplit, boundary)
 | 
						|
            splitup.properties = { ...toSplit.properties }
 | 
						|
            return [splitup]
 | 
						|
        }
 | 
						|
        throw "Invalid geometry type with GeoOperations.clipWith: " + toSplit.geometry.type
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     *
 | 
						|
     *
 | 
						|
     * const f = (type, feature: Feature) => GeoOperations.featureToCoordinateWithRenderingType(feature, type)
 | 
						|
     * const g = geometry => (<Feature> {type: "Feature", properties: {}, geometry})
 | 
						|
     * f("point", g({type:"Point", coordinates:[1,2]})) // => [1,2]
 | 
						|
     * f("centroid", g({type:"Point", coordinates:[1,2]})) // => undefined
 | 
						|
     * f("start", g({type:"Point", coordinates:[1,2]})) // => undefined
 | 
						|
     * f("centroid", g({type:"LineString", coordinates:[[1,2], [3,4]]})) // => [2,3]
 | 
						|
     * f("centroid", g({type:"Polygon", coordinates:[[[1,2], [3,4], [1,2]]]})) // => [2,3]
 | 
						|
     * f("projected_centerpoint", g({type:"LineString", coordinates:[[1,2], [3,4]]})) // => [1.9993137596003214,2.999313759600321]
 | 
						|
     * f("start", g({type:"LineString", coordinates:[[1,2], [3,4]]})) // => [1,2]
 | 
						|
     * f("end", g({type:"LineString", coordinates:[[1,2], [3,4]]})) // => [3,4]
 | 
						|
     *
 | 
						|
     */
 | 
						|
    public static featureToCoordinateWithRenderingType(
 | 
						|
        feature: Feature,
 | 
						|
        location: "point" | "centroid" | "start" | "end" | "projected_centerpoint" | string
 | 
						|
    ): [number, number] | undefined {
 | 
						|
        switch (location) {
 | 
						|
            case "point":
 | 
						|
                if (feature.geometry.type === "Point") {
 | 
						|
                    return <[number, number]>feature.geometry.coordinates
 | 
						|
                }
 | 
						|
                return undefined
 | 
						|
            case "centroid":
 | 
						|
                if (feature.geometry.type === "Point") {
 | 
						|
                    return undefined
 | 
						|
                }
 | 
						|
                return GeoOperations.centerpointCoordinates(feature)
 | 
						|
            case "projected_centerpoint":
 | 
						|
                if (
 | 
						|
                    feature.geometry.type === "LineString" ||
 | 
						|
                    feature.geometry.type === "MultiLineString"
 | 
						|
                ) {
 | 
						|
                    const centerpoint = GeoOperations.centerpointCoordinates(feature)
 | 
						|
                    const projected = GeoOperations.nearestPoint(
 | 
						|
                        <Feature<LineString>>feature,
 | 
						|
                        centerpoint
 | 
						|
                    )
 | 
						|
                    return <[number, number]>projected.geometry.coordinates
 | 
						|
                }
 | 
						|
                return undefined
 | 
						|
            case "start":
 | 
						|
                if (feature.geometry.type === "LineString") {
 | 
						|
                    return <[number, number]>feature.geometry.coordinates[0]
 | 
						|
                }
 | 
						|
                return undefined
 | 
						|
            case "end":
 | 
						|
                if (feature.geometry.type === "LineString") {
 | 
						|
                    return <[number, number]>feature.geometry.coordinates.at(-1)
 | 
						|
                }
 | 
						|
                return undefined
 | 
						|
            default:
 | 
						|
                throw "Unkown location type: " + location
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Constructs all tiles where features overlap with and puts those features in them.
 | 
						|
     * Long features (e.g. lines or polygons) which overlap with multiple tiles are referenced in each tile they overlap with
 | 
						|
     * @param zoomlevel
 | 
						|
     * @param features
 | 
						|
     */
 | 
						|
    public static slice(zoomlevel: number, features: Feature[]): Map<number, Feature[]> {
 | 
						|
        const tiles = new Map<number, Feature[]>()
 | 
						|
 | 
						|
        for (const feature of features) {
 | 
						|
            const bbox = BBox.get(feature)
 | 
						|
            Tiles.MapRange(Tiles.tileRangeFrom(bbox, zoomlevel), (x, y) => {
 | 
						|
                const i = Tiles.tile_index(zoomlevel, x, y)
 | 
						|
 | 
						|
                let tiledata = tiles.get(i)
 | 
						|
                if (tiledata === undefined) {
 | 
						|
                    tiledata = []
 | 
						|
                    tiles.set(i, tiledata)
 | 
						|
                }
 | 
						|
                tiledata.push(feature)
 | 
						|
            })
 | 
						|
        }
 | 
						|
 | 
						|
        return tiles
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Helper function which does the heavy lifting for 'inside'
 | 
						|
     */
 | 
						|
    private static pointInPolygonCoordinates(
 | 
						|
        x: number,
 | 
						|
        y: number,
 | 
						|
        coordinates: [number, number][][]
 | 
						|
    ): boolean {
 | 
						|
        const inside = GeoOperations.pointWithinRing(
 | 
						|
            x,
 | 
						|
            y,
 | 
						|
            /*This is the outer ring of the polygon */ coordinates[0]
 | 
						|
        )
 | 
						|
        if (!inside) {
 | 
						|
            return false
 | 
						|
        }
 | 
						|
        for (let i = 1; i < coordinates.length; i++) {
 | 
						|
            const inHole = GeoOperations.pointWithinRing(
 | 
						|
                x,
 | 
						|
                y,
 | 
						|
                coordinates[i] /* These are inner rings, aka holes*/
 | 
						|
            )
 | 
						|
            if (inHole) {
 | 
						|
                return false
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return true
 | 
						|
    }
 | 
						|
 | 
						|
    private static pointWithinRing(x: number, y: number, ring: [number, number][]) {
 | 
						|
        let inside = false
 | 
						|
        for (let i = 0, j = ring.length - 1; i < ring.length; j = i++) {
 | 
						|
            const coori = ring[i]
 | 
						|
            const coorj = ring[j]
 | 
						|
 | 
						|
            const xi = coori[0]
 | 
						|
            const yi = coori[1]
 | 
						|
            const xj = coorj[0]
 | 
						|
            const yj = coorj[1]
 | 
						|
 | 
						|
            const intersect = yi > y != yj > y && x < ((xj - xi) * (y - yi)) / (yj - yi) + xi
 | 
						|
            if (intersect) {
 | 
						|
                inside = !inside
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return inside
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Calculates the intersection between two features.
 | 
						|
     * Returns the length if intersecting a linestring and a (multi)polygon (in meters), returns a surface area (in m²) if intersecting two (multi)polygons
 | 
						|
     * Returns 0 if both are linestrings
 | 
						|
     * Returns null if the features are not intersecting
 | 
						|
     */
 | 
						|
    private static calculateInstersection(
 | 
						|
        feature,
 | 
						|
        otherFeature,
 | 
						|
        featureBBox: BBox,
 | 
						|
        otherFeatureBBox?: BBox
 | 
						|
    ): number {
 | 
						|
        if (feature.geometry.type === "LineString") {
 | 
						|
            otherFeatureBBox = otherFeatureBBox ?? BBox.get(otherFeature)
 | 
						|
            const overlaps = featureBBox.overlapsWith(otherFeatureBBox)
 | 
						|
            if (!overlaps) {
 | 
						|
                return null
 | 
						|
            }
 | 
						|
 | 
						|
            // Calculate the length of the intersection
 | 
						|
 | 
						|
            let intersectionPoints = turf.lineIntersect(feature, otherFeature)
 | 
						|
            if (intersectionPoints.features.length == 0) {
 | 
						|
                // No intersections.
 | 
						|
                // If one point is inside of the polygon, all points are
 | 
						|
 | 
						|
                const coors = feature.geometry.coordinates
 | 
						|
                const startCoor = coors[0]
 | 
						|
                if (this.inside(startCoor, otherFeature)) {
 | 
						|
                    return this.lengthInMeters(feature)
 | 
						|
                }
 | 
						|
 | 
						|
                return null
 | 
						|
            }
 | 
						|
            let intersectionPointsArray = intersectionPoints.features.map((d) => {
 | 
						|
                return d.geometry.coordinates
 | 
						|
            })
 | 
						|
 | 
						|
            if (otherFeature.geometry.type === "LineString") {
 | 
						|
                if (intersectionPointsArray.length > 0) {
 | 
						|
                    return 0
 | 
						|
                }
 | 
						|
                return null
 | 
						|
            }
 | 
						|
            if (intersectionPointsArray.length == 1) {
 | 
						|
                // We need to add the start- or endpoint of the current feature, depending on which one is embedded
 | 
						|
                const coors = feature.geometry.coordinates
 | 
						|
                const startCoor = coors[0]
 | 
						|
                if (this.inside(startCoor, otherFeature)) {
 | 
						|
                    // The startpoint is embedded
 | 
						|
                    intersectionPointsArray.push(startCoor)
 | 
						|
                } else {
 | 
						|
                    intersectionPointsArray.push(coors[coors.length - 1])
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            let intersection = turf.lineSlice(
 | 
						|
                turf.point(intersectionPointsArray[0]),
 | 
						|
                turf.point(intersectionPointsArray[1]),
 | 
						|
                feature
 | 
						|
            )
 | 
						|
 | 
						|
            if (intersection == null) {
 | 
						|
                return null
 | 
						|
            }
 | 
						|
            const intersectionSize = turf.length(intersection) // in km
 | 
						|
            return intersectionSize * 1000
 | 
						|
        }
 | 
						|
 | 
						|
        if (feature.geometry.type === "Polygon" || feature.geometry.type === "MultiPolygon") {
 | 
						|
            const otherFeatureBBox = BBox.get(otherFeature)
 | 
						|
            const overlaps = featureBBox.overlapsWith(otherFeatureBBox)
 | 
						|
            if (!overlaps) {
 | 
						|
                return null
 | 
						|
            }
 | 
						|
            if (otherFeature.geometry.type === "LineString") {
 | 
						|
                return this.calculateInstersection(
 | 
						|
                    otherFeature,
 | 
						|
                    feature,
 | 
						|
                    otherFeatureBBox,
 | 
						|
                    featureBBox
 | 
						|
                )
 | 
						|
            }
 | 
						|
 | 
						|
            try {
 | 
						|
                const intersection = turf.intersect(feature, otherFeature)
 | 
						|
                if (intersection == null) {
 | 
						|
                    return null
 | 
						|
                }
 | 
						|
                return turf.area(intersection) // in m²
 | 
						|
            } catch (e) {
 | 
						|
                if (e.message === "Each LinearRing of a Polygon must have 4 or more Positions.") {
 | 
						|
                    // WORKAROUND TIME!
 | 
						|
                    // See https://github.com/Turfjs/turf/pull/2238
 | 
						|
                    return null
 | 
						|
                }
 | 
						|
                throw e
 | 
						|
            }
 | 
						|
        }
 | 
						|
        throw "CalculateIntersection fallthrough: can not calculate an intersection between features"
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Creates a linestring object based on the outer ring of the given polygon
 | 
						|
     *
 | 
						|
     * Returns the argument if not a polygon
 | 
						|
     * @param p
 | 
						|
     */
 | 
						|
    public static outerRing<P>(p: Feature<Polygon | LineString, P>): Feature<LineString, P> {
 | 
						|
        if (p.geometry.type !== "Polygon") {
 | 
						|
            return <Feature<LineString, P>>p
 | 
						|
        }
 | 
						|
        return {
 | 
						|
            type: "Feature",
 | 
						|
            properties: p.properties,
 | 
						|
            geometry: {
 | 
						|
                type: "LineString",
 | 
						|
                coordinates: p.geometry.coordinates[0],
 | 
						|
            },
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 |