import { BBox } from "./BBox" import LayerConfig from "../Models/ThemeConfig/LayerConfig" import * as turf from "@turf/turf" import { AllGeoJSON, booleanWithin, Coord, Lines } from "@turf/turf" import { Feature, GeoJSON, Geometry, LineString, MultiLineString, MultiPolygon, Point, Polygon, Position, } from "geojson" import togpx from "togpx" import Constants from "../Models/Constants" import { Tiles } from "../Models/TileRange" export class GeoOperations { private static readonly _earthRadius = 6378137 private static readonly _originShift = (2 * Math.PI * GeoOperations._earthRadius) / 2 /** * Create a union between two features */ public static union(f0: Feature, f1: Feature): Feature | null { return turf.union(f0, f1) } public static intersect(f0: Feature, f1: Feature): Feature | null { return turf.intersect(f0, f1) } static surfaceAreaInSqMeters(feature: any) { return turf.area(feature) } /** * Converts a GeoJson feature to a point GeoJson feature * @param feature */ static centerpoint(feature: any): Feature { const newFeature: Feature = turf.center(feature) newFeature.properties = feature.properties newFeature.id = feature.id return newFeature } /** * Returns [lon,lat] coordinates * @param feature */ static centerpointCoordinates(feature: AllGeoJSON | GeoJSON): [number, number] { return <[number, number]>turf.center(feature).geometry.coordinates } /** * Returns the distance between the two points in meters * @param lonlat0 * @param lonlat1 */ static distanceBetween(lonlat0: [number, number], lonlat1: [number, number] | Position) { return turf.distance(lonlat0, lonlat1, { units: "meters" }) } static convexHull(featureCollection, options: { concavity?: number }) { return turf.convex(featureCollection, options) } /** * Calculates the overlap of 'feature' with every other specified feature. * The features with which 'feature' overlaps, are returned together with their overlap area in m² * * If 'feature' is a LineString, the features in which this feature is (partly) embedded is returned, the overlap length in meter is given * If 'feature' is a Polygon, overlapping points and points within the polygon will be returned * * If 'feature' is a point, it will return every feature the point is embedded in. Overlap will be undefined * * const polygon = {"type": "Feature","properties": {},"geometry": {"type": "Polygon","coordinates": [[[1.8017578124999998,50.401515322782366],[-3.1640625,46.255846818480315],[5.185546875,44.74673324024678],[1.8017578124999998,50.401515322782366]]]}}; * const point = {"type": "Feature", "properties": {}, "geometry": { "type": "Point", "coordinates": [2.274169921875, 46.76244305208004]}}; * const overlap = GeoOperations.calculateOverlap(point, [polygon]); * overlap.length // => 1 * overlap[0].feat == polygon // => true * const line = {"type": "Feature","properties": {},"geometry": {"type": "LineString","coordinates": [[3.779296875,48.777912755501845],[1.23046875,47.60616304386874]]}}; * const lineOverlap = GeoOperations.calculateOverlap(line, [polygon]); * lineOverlap.length // => 1 * lineOverlap[0].overlap // => 156745.3293320278 * lineOverlap[0].feat == polygon // => true * const line0 = {"type": "Feature","properties": {},"geometry": {"type": "LineString","coordinates": [[0.0439453125,47.31648293428332],[0.6591796875,46.77749276376827]]}}; * const overlap0 = GeoOperations.calculateOverlap(line0, [polygon]); * overlap.length // => 1 */ static calculateOverlap(feature: any, otherFeatures: any[]): { feat: any; overlap: number }[] { const featureBBox = BBox.get(feature) const result: { feat: any; overlap: number }[] = [] if (feature.geometry.type === "Point") { const coor = feature.geometry.coordinates for (const otherFeature of otherFeatures) { if ( feature.properties.id !== undefined && feature.properties.id === otherFeature.properties.id ) { continue } if (otherFeature.geometry === undefined) { console.error("No geometry for feature ", feature) throw "List of other features contains a feature without geometry an undefined" } if (GeoOperations.inside(coor, otherFeature)) { result.push({ feat: otherFeature, overlap: undefined }) } } return result } if (feature.geometry.type === "LineString") { for (const otherFeature of otherFeatures) { if ( feature.properties.id !== undefined && feature.properties.id === otherFeature.properties.id ) { continue } const intersection = GeoOperations.calculateInstersection( feature, otherFeature, featureBBox ) if (intersection === null) { continue } result.push({ feat: otherFeature, overlap: intersection }) } return result } if (feature.geometry.type === "Polygon" || feature.geometry.type === "MultiPolygon") { for (const otherFeature of otherFeatures) { if ( feature.properties.id !== undefined && feature.properties.id === otherFeature.properties.id ) { continue } if (otherFeature.geometry.type === "Point") { if (this.inside(otherFeature, feature)) { result.push({ feat: otherFeature, overlap: undefined }) } continue } // Calculate the surface area of the intersection const intersection = this.calculateInstersection(feature, otherFeature, featureBBox) if (intersection === null) { continue } result.push({ feat: otherFeature, overlap: intersection }) } return result } console.error( "Could not correctly calculate the overlap of ", feature, ": unsupported type" ) return result } /** * Detect wether or not the given point is located in the feature * * // Should work with a normal polygon * const polygon = {"type": "Feature","properties": {},"geometry": {"type": "Polygon","coordinates": [[[1.8017578124999998,50.401515322782366],[-3.1640625,46.255846818480315],[5.185546875,44.74673324024678],[1.8017578124999998,50.401515322782366]]]}}; * GeoOperations.inside([3.779296875, 48.777912755501845], polygon) // => false * GeoOperations.inside([1.23046875, 47.60616304386874], polygon) // => true * * // should work with a multipolygon and detect holes * const multiPolygon = {"type": "Feature", "properties": {}, * "geometry": { * "type": "MultiPolygon", * "coordinates": [[ * [[1.8017578124999998,50.401515322782366],[-3.1640625,46.255846818480315],[5.185546875,44.74673324024678],[1.8017578124999998,50.401515322782366]], * [[1.0107421875,48.821332549646634],[1.329345703125,48.25394114463431],[1.988525390625,48.71271258145237],[0.999755859375,48.86471476180277],[1.0107421875,48.821332549646634]] * ]] * } * }; * GeoOperations.inside([2.515869140625, 47.37603463349758], multiPolygon) // => true * GeoOperations.inside([1.42822265625, 48.61838518688487], multiPolygon) // => false * GeoOperations.inside([4.02099609375, 47.81315451752768], multiPolygon) // => false */ public static inside( pointCoordinate: [number, number] | Feature, feature: Feature ): boolean { // ray-casting algorithm based on // http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html if (feature.geometry.type === "Point") { // The feature that should 'contain' pointCoordinate is a point itself, so it cannot contain anything return false } if (pointCoordinate["geometry"] !== undefined) { pointCoordinate = pointCoordinate["geometry"].coordinates } const x: number = pointCoordinate[0] const y: number = pointCoordinate[1] if (feature.geometry.type === "MultiPolygon") { const coordinatess = feature.geometry.coordinates for (const coordinates of coordinatess) { // @ts-ignore const inThisPolygon = GeoOperations.pointInPolygonCoordinates(x, y, coordinates) if (inThisPolygon) { return true } } return false } if (feature.geometry.type === "Polygon") { // @ts-ignore return GeoOperations.pointInPolygonCoordinates(x, y, feature.geometry.coordinates) } throw "GeoOperations.inside: unsupported geometry type " + feature.geometry.type } static lengthInMeters(feature: any) { return turf.length(feature) * 1000 } static buffer(feature: any, bufferSizeInMeter: number) { return turf.buffer(feature, bufferSizeInMeter / 1000, { units: "kilometers", }) } static bbox(feature: any): Feature { const [lon, lat, lon0, lat0] = turf.bbox(feature) return { type: "Feature", properties: {}, geometry: { type: "LineString", coordinates: [ [lon, lat], [lon0, lat], [lon0, lat0], [lon, lat0], [lon, lat], ], }, } } /** * Generates the closest point on a way from a given point. * If the passed-in geojson object is a polygon, the outer ring will be used as linestring * * The properties object will contain three values: // - `index`: closest point was found on nth line part, // - `dist`: distance between pt and the closest point (in kilometer), // `location`: distance along the line between start (of the line) and the closest point. * @param way The road on which you want to find a point * @param point Point defined as [lon, lat] */ public static nearestPoint( way: Feature, point: [number, number] ): Feature< Point, { index: number dist: number location: number } > { return ( turf.nearestPointOnLine(>way, point, { units: "kilometers" }) ) } /** * Helper method to reuse the coordinates of the way as LineString. * Mostly used as helper for 'nearestPoint' * @param way */ public static forceLineString( way: Feature ): Feature { if (way.geometry.type === "Polygon") { way = { ...way } way.geometry = { ...way.geometry } way.geometry.type = "LineString" way.geometry.coordinates = (way.geometry).coordinates[0] } else if (way.geometry.type === "MultiPolygon") { way = { ...way } way.geometry = { ...way.geometry } way.geometry.type = "MultiLineString" way.geometry.coordinates = (way.geometry).coordinates[0] } return way } public static toCSV(features: any[]): string { const headerValuesSeen = new Set() const headerValuesOrdered: string[] = [] function addH(key) { if (!headerValuesSeen.has(key)) { headerValuesSeen.add(key) headerValuesOrdered.push(key) } } addH("_lat") addH("_lon") const lines: string[] = [] for (const feature of features) { const properties = feature.properties for (const key in properties) { if (!properties.hasOwnProperty(key)) { continue } addH(key) } } headerValuesOrdered.sort() for (const feature of features) { const properties = feature.properties let line = "" for (const key of headerValuesOrdered) { const value = properties[key] if (value === undefined) { line += "," } else { line += JSON.stringify(value) + "," } } lines.push(line) } return headerValuesOrdered.map((v) => JSON.stringify(v)).join(",") + "\n" + lines.join("\n") } //Converts given lat/lon in WGS84 Datum to XY in Spherical Mercator EPSG:900913 public static ConvertWgs84To900913(lonLat: [number, number]): [number, number] { const lon = lonLat[0] const lat = lonLat[1] const x = (lon * GeoOperations._originShift) / 180 let y = Math.log(Math.tan(((90 + lat) * Math.PI) / 360)) / (Math.PI / 180) y = (y * GeoOperations._originShift) / 180 return [x, y] } //Converts XY point from (Spherical) Web Mercator EPSG:3785 (unofficially EPSG:900913) to lat/lon in WGS84 Datum public static Convert900913ToWgs84(lonLat: [number, number]): [number, number] { const lon = lonLat[0] const lat = lonLat[1] const x = (180 * lon) / GeoOperations._originShift let y = (180 * lat) / GeoOperations._originShift y = (180 / Math.PI) * (2 * Math.atan(Math.exp((y * Math.PI) / 180)) - Math.PI / 2) return [x, y] } public static GeoJsonToWGS84(geojson) { return turf.toWgs84(geojson) } /** * Tries to remove points which do not contribute much to the general outline. * Points for which the angle is ~ 180° are removed * @param coordinates * @constructor */ public static SimplifyCoordinates(coordinates: [number, number][]) { const newCoordinates = [] for (let i = 1; i < coordinates.length - 1; i++) { const coordinate = coordinates[i] const prev = coordinates[i - 1] const next = coordinates[i + 1] const b0 = turf.bearing(prev, coordinate, { final: true }) const b1 = turf.bearing(coordinate, next) const diff = Math.abs(b1 - b0) if (diff < 2) { continue } newCoordinates.push(coordinate) } return newCoordinates } /** * Calculates line intersection between two features. */ public static LineIntersections(feature, otherFeature): [number, number][] { return turf .lineIntersect(feature, otherFeature) .features.map((p) => <[number, number]>p.geometry.coordinates) } public static AsGpx( feature: Feature, options?: { layer?: LayerConfig; gpxMetadata?: any } ): string { const metadata = options?.gpxMetadata ?? {} metadata["time"] = metadata["time"] ?? new Date().toISOString() const tags = feature.properties if (options?.layer !== undefined) { metadata["name"] = options?.layer.title?.GetRenderValue(tags)?.Subs(tags)?.txt metadata["desc"] = "Generated with MapComplete layer " + options?.layer.id if (tags._backend?.contains("openstreetmap")) { metadata["copyright"] = "Data copyrighted by OpenStreetMap-contributors, freely available under ODbL. See https://www.openstreetmap.org/copyright" metadata["author"] = tags["_last_edit:contributor"] metadata["link"] = "https://www.openstreetmap.org/" + tags.id metadata["time"] = tags["_last_edit:timestamp"] } } return togpx(feature, { creator: "MapComplete " + Constants.vNumber, metadata, }) } public static IdentifieCommonSegments(coordinatess: [number, number][][]): { originalIndex: number segmentShardWith: number[] coordinates: [] }[] { // An edge. Note that the edge might be reversed to fix the sorting condition: start[0] < end[0] && (start[0] != end[0] || start[0] < end[1]) type edge = { start: [number, number] end: [number, number] intermediate: [number, number][] members: { index: number; isReversed: boolean }[] } // The strategy: // 1. Index _all_ edges from _every_ linestring. Index them by starting key, gather which relations run over them // 2. Join these edges back together - as long as their membership groups are the same // 3. Convert to results const allEdgesByKey = new Map() for (let index = 0; index < coordinatess.length; index++) { const coordinates = coordinatess[index] for (let i = 0; i < coordinates.length - 1; i++) { const c0 = coordinates[i] const c1 = coordinates[i + 1] const isReversed = c0[0] > c1[0] || (c0[0] == c1[0] && c0[1] > c1[1]) let key: string if (isReversed) { key = "" + c1 + ";" + c0 } else { key = "" + c0 + ";" + c1 } const member = { index, isReversed } if (allEdgesByKey.has(key)) { allEdgesByKey.get(key).members.push(member) continue } let edge: edge if (!isReversed) { edge = { start: c0, end: c1, members: [member], intermediate: [], } } else { edge = { start: c1, end: c0, members: [member], intermediate: [], } } allEdgesByKey.set(key, edge) } } // Lets merge them back together! let didMergeSomething = false let allMergedEdges = Array.from(allEdgesByKey.values()) const allEdgesByStartPoint = new Map() for (const edge of allMergedEdges) { edge.members.sort((m0, m1) => m0.index - m1.index) const kstart = edge.start + "" if (!allEdgesByStartPoint.has(kstart)) { allEdgesByStartPoint.set(kstart, []) } allEdgesByStartPoint.get(kstart).push(edge) } function membersAreCompatible(first: edge, second: edge): boolean { // There must be an exact match between the members if (first.members === second.members) { return true } if (first.members.length !== second.members.length) { return false } // Members are sorted and have the same length, so we can check quickly for (let i = 0; i < first.members.length; i++) { const m0 = first.members[i] const m1 = second.members[i] if (m0.index !== m1.index || m0.isReversed !== m1.isReversed) { return false } } // Allrigth, they are the same, lets mark this permanently second.members = first.members return true } do { didMergeSomething = false // We use 'allMergedEdges' as our running list const consumed = new Set() for (const edge of allMergedEdges) { // Can we make this edge longer at the end? if (consumed.has(edge)) { continue } console.log("Considering edge", edge) const matchingEndEdges = allEdgesByStartPoint.get(edge.end + "") console.log("Matchign endpoints:", matchingEndEdges) if (matchingEndEdges === undefined) { continue } for (let i = 0; i < matchingEndEdges.length; i++) { const endEdge = matchingEndEdges[i] if (consumed.has(endEdge)) { continue } if (!membersAreCompatible(edge, endEdge)) { continue } // We can make the segment longer! didMergeSomething = true console.log("Merging ", edge, "with ", endEdge) edge.intermediate.push(edge.end) edge.end = endEdge.end consumed.add(endEdge) matchingEndEdges.splice(i, 1) break } } allMergedEdges = allMergedEdges.filter((edge) => !consumed.has(edge)) } while (didMergeSomething) return [] } /** * Removes points that do not contribute to the geometry from linestrings and the outer ring of polygons. * Returs a new copy of the feature * * const feature = {"geometry": {"type": "Polygon","coordinates": [[[4.477944199999975,51.02783550000022],[4.477987899999996,51.027818800000034],[4.478004500000021,51.02783399999988],[4.478025499999962,51.02782489999994],[4.478079099999993,51.027873899999896],[4.47801040000006,51.027903799999955],[4.477964799999972,51.02785709999982],[4.477964699999964,51.02785690000006],[4.477944199999975,51.02783550000022]]]}} * const copy = GeoOperations.removeOvernoding(feature) * expect(copy.geometry.coordinates[0]).deep.equal([[4.477944199999975,51.02783550000022],[4.477987899999996,51.027818800000034],[4.478004500000021,51.02783399999988],[4.478025499999962,51.02782489999994],[4.478079099999993,51.027873899999896],[4.47801040000006,51.027903799999955],[4.477944199999975,51.02783550000022]]) */ static removeOvernoding(feature: any) { if (feature.geometry.type !== "LineString" && feature.geometry.type !== "Polygon") { throw "Overnode removal is only supported on linestrings and polygons" } const copy = { ...feature, geometry: { ...feature.geometry }, } let coordinates: [number, number][] if (feature.geometry.type === "LineString") { coordinates = [...feature.geometry.coordinates] copy.geometry.coordinates = coordinates } else { coordinates = [...feature.geometry.coordinates[0]] copy.geometry.coordinates[0] = coordinates } // inline replacement in the coordinates list for (let i = coordinates.length - 2; i >= 1; i--) { const coordinate = coordinates[i] const nextCoordinate = coordinates[i + 1] const prevCoordinate = coordinates[i - 1] const distP = GeoOperations.distanceBetween(coordinate, prevCoordinate) if (distP < 0.1) { coordinates.splice(i, 1) continue } if (i == coordinates.length - 2) { const distN = GeoOperations.distanceBetween(coordinate, nextCoordinate) if (distN < 0.1) { coordinates.splice(i, 1) continue } } const bearingN = turf.bearing(coordinate, nextCoordinate) const bearingP = turf.bearing(prevCoordinate, coordinate) const diff = Math.abs(bearingN - bearingP) if (diff < 4) { // If the diff is low, this point is hardly relevant coordinates.splice(i, 1) } else if (360 - diff < 4) { // In case that the line is going south, e.g. bearingN = 179, bearingP = -179 coordinates.splice(i, 1) } } return copy } /** * Takes two points and finds the geographic bearing between them, i.e. the angle measured in degrees from the north line (0 degrees) */ public static bearing(a: Coord, b: Coord): number { return turf.bearing(a, b) } /** * Returns 'true' if one feature contains the other feature * * const pond: Feature = { * "type": "Feature", * "properties": {"natural":"water","water":"pond"}, * "geometry": { * "type": "Polygon", * "coordinates": [[ * [4.362924098968506,50.8435422298544 ], * [4.363272786140442,50.8435219059949 ], * [4.363213777542114,50.8437420806679 ], * [4.362924098968506,50.8435422298544 ] * ]]}} * const park: Feature = { * "type": "Feature", * "properties": {"leisure":"park"}, * "geometry": { * "type": "Polygon", * "coordinates": [[ * [ 4.36073541641235,50.84323737103244 ], * [ 4.36469435691833, 50.8423905305197 ], * [ 4.36659336090087, 50.8458997374786 ], * [ 4.36254858970642, 50.8468007074916 ], * [ 4.36073541641235, 50.8432373710324 ] * ]]}} * GeoOperations.completelyWithin(pond, park) // => true * GeoOperations.completelyWithin(park, pond) // => false */ static completelyWithin( feature: Feature, possiblyEnclosingFeature: Feature ): boolean { return booleanWithin(feature, possiblyEnclosingFeature) } /** * Create an intersection between two features. * One or multiple new feature is returned based on 'toSplit', which'll have a geometry that is completely withing boundary */ public static clipWith(toSplit: Feature, boundary: Feature): Feature[] { if (toSplit.geometry.type === "Point") { const p = >toSplit if (GeoOperations.inside(<[number, number]>p.geometry.coordinates, boundary)) { return [p] } else { return [] } } if (toSplit.geometry.type === "LineString") { const splitup = turf.lineSplit(>toSplit, boundary) const kept = [] for (const f of splitup.features) { const ls = >f if (!GeoOperations.inside(GeoOperations.centerpointCoordinates(f), boundary)) { continue } f.properties = { ...toSplit.properties } kept.push(f) } return kept } if (toSplit.geometry.type === "Polygon" || toSplit.geometry.type == "MultiPolygon") { const splitup = turf.intersect(>toSplit, boundary) splitup.properties = { ...toSplit.properties } return [splitup] } throw "Invalid geometry type with GeoOperations.clipWith: " + toSplit.geometry.type } /** * * * const f = (type, feature: Feature) => GeoOperations.featureToCoordinateWithRenderingType(feature, type) * const g = geometry => ( {type: "Feature", properties: {}, geometry}) * f("point", g({type:"Point", coordinates:[1,2]})) // => [1,2] * f("centroid", g({type:"Point", coordinates:[1,2]})) // => undefined * f("start", g({type:"Point", coordinates:[1,2]})) // => undefined * f("centroid", g({type:"LineString", coordinates:[[1,2], [3,4]]})) // => [2,3] * f("centroid", g({type:"Polygon", coordinates:[[[1,2], [3,4], [1,2]]]})) // => [2,3] * f("projected_centerpoint", g({type:"LineString", coordinates:[[1,2], [3,4]]})) // => [1.9993137596003214,2.999313759600321] * f("start", g({type:"LineString", coordinates:[[1,2], [3,4]]})) // => [1,2] * f("end", g({type:"LineString", coordinates:[[1,2], [3,4]]})) // => [3,4] * */ public static featureToCoordinateWithRenderingType( feature: Feature, location: "point" | "centroid" | "start" | "end" | "projected_centerpoint" | string ): [number, number] | undefined { switch (location) { case "point": if (feature.geometry.type === "Point") { return <[number, number]>feature.geometry.coordinates } return undefined case "centroid": if (feature.geometry.type === "Point") { return undefined } return GeoOperations.centerpointCoordinates(feature) case "projected_centerpoint": if ( feature.geometry.type === "LineString" || feature.geometry.type === "MultiLineString" ) { const centerpoint = GeoOperations.centerpointCoordinates(feature) const projected = GeoOperations.nearestPoint( >feature, centerpoint ) return <[number, number]>projected.geometry.coordinates } return undefined case "start": if (feature.geometry.type === "LineString") { return <[number, number]>feature.geometry.coordinates[0] } return undefined case "end": if (feature.geometry.type === "LineString") { return <[number, number]>feature.geometry.coordinates.at(-1) } return undefined default: throw "Unkown location type: " + location } } /** * Constructs all tiles where features overlap with and puts those features in them. * Long features (e.g. lines or polygons) which overlap with multiple tiles are referenced in each tile they overlap with * @param zoomlevel * @param features */ public static slice(zoomlevel: number, features: Feature[]): Map { const tiles = new Map() for (const feature of features) { const bbox = BBox.get(feature) Tiles.MapRange(Tiles.tileRangeFrom(bbox, zoomlevel), (x, y) => { const i = Tiles.tile_index(zoomlevel, x, y) let tiledata = tiles.get(i) if (tiledata === undefined) { tiledata = [] tiles.set(i, tiledata) } tiledata.push(feature) }) } return tiles } /** * Helper function which does the heavy lifting for 'inside' */ private static pointInPolygonCoordinates( x: number, y: number, coordinates: [number, number][][] ): boolean { const inside = GeoOperations.pointWithinRing( x, y, /*This is the outer ring of the polygon */ coordinates[0] ) if (!inside) { return false } for (let i = 1; i < coordinates.length; i++) { const inHole = GeoOperations.pointWithinRing( x, y, coordinates[i] /* These are inner rings, aka holes*/ ) if (inHole) { return false } } return true } private static pointWithinRing(x: number, y: number, ring: [number, number][]) { let inside = false for (let i = 0, j = ring.length - 1; i < ring.length; j = i++) { const coori = ring[i] const coorj = ring[j] const xi = coori[0] const yi = coori[1] const xj = coorj[0] const yj = coorj[1] const intersect = yi > y != yj > y && x < ((xj - xi) * (y - yi)) / (yj - yi) + xi if (intersect) { inside = !inside } } return inside } /** * Calculates the intersection between two features. * Returns the length if intersecting a linestring and a (multi)polygon (in meters), returns a surface area (in m²) if intersecting two (multi)polygons * Returns 0 if both are linestrings * Returns null if the features are not intersecting */ private static calculateInstersection( feature, otherFeature, featureBBox: BBox, otherFeatureBBox?: BBox ): number { if (feature.geometry.type === "LineString") { otherFeatureBBox = otherFeatureBBox ?? BBox.get(otherFeature) const overlaps = featureBBox.overlapsWith(otherFeatureBBox) if (!overlaps) { return null } // Calculate the length of the intersection let intersectionPoints = turf.lineIntersect(feature, otherFeature) if (intersectionPoints.features.length == 0) { // No intersections. // If one point is inside of the polygon, all points are const coors = feature.geometry.coordinates const startCoor = coors[0] if (this.inside(startCoor, otherFeature)) { return this.lengthInMeters(feature) } return null } let intersectionPointsArray = intersectionPoints.features.map((d) => { return d.geometry.coordinates }) if (otherFeature.geometry.type === "LineString") { if (intersectionPointsArray.length > 0) { return 0 } return null } if (intersectionPointsArray.length == 1) { // We need to add the start- or endpoint of the current feature, depending on which one is embedded const coors = feature.geometry.coordinates const startCoor = coors[0] if (this.inside(startCoor, otherFeature)) { // The startpoint is embedded intersectionPointsArray.push(startCoor) } else { intersectionPointsArray.push(coors[coors.length - 1]) } } let intersection = turf.lineSlice( turf.point(intersectionPointsArray[0]), turf.point(intersectionPointsArray[1]), feature ) if (intersection == null) { return null } const intersectionSize = turf.length(intersection) // in km return intersectionSize * 1000 } if (feature.geometry.type === "Polygon" || feature.geometry.type === "MultiPolygon") { const otherFeatureBBox = BBox.get(otherFeature) const overlaps = featureBBox.overlapsWith(otherFeatureBBox) if (!overlaps) { return null } if (otherFeature.geometry.type === "LineString") { return this.calculateInstersection( otherFeature, feature, otherFeatureBBox, featureBBox ) } try { const intersection = turf.intersect(feature, otherFeature) if (intersection == null) { return null } return turf.area(intersection) // in m² } catch (e) { if (e.message === "Each LinearRing of a Polygon must have 4 or more Positions.") { // WORKAROUND TIME! // See https://github.com/Turfjs/turf/pull/2238 return null } throw e } } throw "CalculateIntersection fallthrough: can not calculate an intersection between features" } /** * Creates a linestring object based on the outer ring of the given polygon * * Returns the argument if not a polygon * @param p */ public static outerRing

(p: Feature): Feature { if (p.geometry.type !== "Polygon") { return >p } return { type: "Feature", properties: p.properties, geometry: { type: "LineString", coordinates: p.geometry.coordinates[0], }, } } }